Quantitatively Disentangling the Geographical Impacts of Topography on PM2.5 Pollution in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM2.5 Data
2.2. Geomorphological Data
2.3. Digital Elevation Model Data
2.4. Data of the Mountains
2.5. Land Cover Data
2.6. Methods
2.6.1. Preprocessing the PM2.5 Concentrations
2.6.2. Identifying the Mountains’ Blocking Effects on PM2.5 Pollution
2.6.3. Mann–Kendall Trend Test
3. Results
3.1. PM2.5 Pollution in Different Topography Types
3.2. Mountains’ Blocking Effects on PM2.5 Dispersion
3.3. Elevation for the Position at Which Mountains’ Effective Blocking Effects Begin
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Yang, X.; Wang, Y.; Zhao, C.; Fan, H.; Yang, Y.; Chi, Y.; Shen, L.; Yan, X. Health risk and disease burden attributable to long-term global fine-mode particles. Chemosphere 2022, 287, 132435. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, C.; Wu, J.; Miao, G.; Chen, M.; Chen, S.; Wang, S.; Guo, Z.; Wang, Z.; Wang, B.; et al. Intermediate Aerosol Loading Enhances Photosynthetic Activity of Croplands. Geophys. Res. Lett. 2021, 48, e2020GL091893. [Google Scholar] [CrossRef]
- Lin, H.-H.; Murray, M.; Cohen, T.; Colijn, C.; Ezzati, M. Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China: A time-based, multiple risk factor, modelling study. Lancet 2008, 372, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Faraji Ghasemi, F.; Dobaradaran, S.; Saeedi, R.; Nabipour, I.; Nazmara, S.; Ranjbar Vakil Abadi, D.; Arfaeinia, H.; Ramavandi, B.; Spitz, J.; Mohammadi, M.J.; et al. Levels and ecological and health risk assessment of PM2.5-bound heavy metals in the northern part of the Persian Gulf. Environ. Sci. Pollut. Res. 2020, 27, 5305–5313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jiang, X.; Tong, D.; Davis, S.J.; Zhao, H.; Geng, G.; Feng, T.; Zheng, B.; Lu, Z.; Streets, D.G.; et al. Transboundary health impacts of transported global air pollution and international trade. Nature 2017, 543, 705–709. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.J.D.; Brauer, M.P.; Burnett, R.P.; Anderson, H.R.P.; Frostad, J.M.P.H.; Estep, K.M.P.A.; Balakrishnan, K.P.; Brunekreef, B.P.; Dandona, L.P.; Dandona, R.P.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Dwyerlindgren, L.; Lofgren, K.T.; Rajaratnam, J.K.; Marcus, J.R.; Levinrector, A.; Levitz, C.E.; Lopez, A.D.; Murray, C.J. Age-specific and sex-specific mortality in 187 countries, 1970–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2071–2094. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, C.; Yang, F.; Che, L.; Wang, B.; Sun, D. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2015. J. Geogr. Sci. 2019, 29, 253–270. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Wang, X.; Xu, J.; Xu, C.; Lu, D.; Ye, C.; Wang, Z.; Bai, L. Quantifying the influence of natural and socioeconomic factors and their interactive impact on PM2.5 pollution in China. Environ. Pollut. 2018, 241, 475–483. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, H.; Zhe, F.; Xie, W.; Song, J. Study on the relationship between urbanization and fine particulate matter (PM2.5) concentration and its implication in China. J. Clean. Prod. 2018, 182, 872–882. [Google Scholar] [CrossRef]
- Wang, Q.; Kwan, M.P.; Zhou, K.; Fan, J.; Wang, Y.; Zhan, D. The impacts of urbanization on fine particulate matter (PM2.5) concentrations: Empirical evidence from 135 countries worldwide. Environ. Pollut. 2019, 247, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, M.; Qian, X.; Li, C.; Chen, S.; Wang, W. Using the geographical detector technique to explore the impact of socioeconomic factors on PM2.5 concentrations in China. J. Clean Prod. 2019, 211, 1480–1490. [Google Scholar] [CrossRef]
- Hammer, M.S.; Van Donkelaar, A.; Li, C.; Lyapustin, A.; Sayer, A.M.; Hsu, N.C.; Levy, R.C.; Garay, M.J.; Kalashnikova, O.V.; Kahn, R.A.; et al. Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998–2018). Environ. Sci. Technol. 2020, 54, 7879–7890. [Google Scholar] [CrossRef] [PubMed]
- Van Donkelaar, A.; Martin, R.V.; Li, C.; Burnett, R.T. Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2019, 53, 2595–2611. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Yang, M.; Fan, H.; Fan, G.; Al-Qaness, M.A.A. An improved deep learning model for predicting daily PM2.5 concentration. Sci. Rep. 2020, 10, 20988. [Google Scholar] [CrossRef]
- Masood, A.; Ahmad, K. A model for particulate matter (PM2.5) prediction for Delhi based on machine learning approaches. Procedia. Comput. Sci. 2020, 167, 2101–2110. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, C.; Fan, H.; Yang, Y.; Sun, Y. Toward Understanding the Differences of PM2.5 Characteristics Among Five China Urban Cities. Asia-Pac. J. Atmos. Sci. 2020, 56, 493–502. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, C.; Yang, Y. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmos. Environ. 2020, 220, 117066. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, W.; Liu, C.; Chen, R.; Kan, H. The association between long-term fine particulate air pollution and life expectancy in China, 2013 to 2017. Sci. Total Environ. 2020, 712, 136507. [Google Scholar] [CrossRef]
- Altieri, K.E.; Keen, S.L. Public health benefits of reducing exposure to ambient fine particulate matter in South Africa. Sci. Total Environ. 2019, 684, 610–620. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, Y.; Fan, H.; Huang, J.; Fu, Y.; Zhang, X.; Kang, S.; Cong, Z.; Letu, H.; Menenti, M. Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau. Natl. Sci. Rev. 2020, 7, 492–495. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y.; Guo, J.; Zhao, C.; Cribb, M.C.; Dong, X.; Fan, J.; Gong, D.; Huang, J.; Jiang, M.; et al. East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EAST-AIRCPC). J. Geophys. Res. Atmos. 2019, 124, 13026–13054. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Feng, Y.; Liang, H. The Impact of Meteorological Factors on PM2.5 Variations in Hong Kong. IOP Conf. Ser. Earth Environ. Sci. 2017, 78, 012003. [Google Scholar] [CrossRef]
- Wang, J.; Ogawa, S. Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan. Int. J. Environ. Res. Public Health 2015, 12, 9089–9101. [Google Scholar] [CrossRef]
- Requia, W.J.; Jhun, I.; Coull, B.A.; Koutrakis, P. Climate impact on ambient PM2.5 elemental concentration in the United States: A trend analysis over the last 30 years. Environ. Int. 2019, 131, 104888. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sun, Y.; Zhao, C.; Jiang, H. Impact of Precipitation with Different Intensity on PM2.5 over Typical Regions of China. Atmosphere 2020, 11, 906. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.P.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environ. Int. 2020, 139, 105558. [Google Scholar] [CrossRef]
- Mcduffie, E.E.; Martin, R.V.; Spadaro, J.V.; Burnett, R.; Smith, S.J.; O’rourke, P.; Hammer, M.S.; Van Donkelaar, A.; Bindle, L.; Shah, V.; et al. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat. Commun. 2021, 12, 3594. [Google Scholar] [CrossRef]
- Wang, W.; Yu, J.; Cui, Y.; He, J.; Xue, P.; Cao, W.; Ying, H.; Gao, W.; Yan, Y.; Hu, B.; et al. Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China. Atmos. Res. 2018, 203, 105–117. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, X.; Huang, L.; Bi, J.; Liu, Y. Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing. Environ. Sci. Technol. 2014, 48, 7436–7444. [Google Scholar] [CrossRef]
- Hamed, H.H.; Jumaah, H.J.; Kalantar, B.; Ueda, N.; Saeidi, V.; Mansor, S.; Khalaf, Z.A. Predicting PM2.5 levels over the north of Iraq using regression analysis and geographical information system (GIS) techniques. Geomat. Nat. Haz. Risk 2021, 12, 1778–1796. [Google Scholar] [CrossRef]
- Minh, V.T.T.; Tin, T.T.; Hien, T.T. PM2.5 Forecast System by Using Machine Learning and WRF Model, A Case Study: Ho Chi Minh City, Vietnam. Aerosol Air Qual. Res. 2021, 21, 210108. [Google Scholar] [CrossRef]
- Zamani Joharestani, M.; Cao, C.; Ni, X.; Bashir, B.; Talebiesfandarani, S. PM2.5 Prediction Based on Random Forest, XGBoost, and Deep Learning Using Multisource Remote Sensing Data. Atmosphere 2019, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.a.R.; Thun, M.J.; Namboodiri, M.M.; Dockery, D.W.; Evans, J.S.; Speizer, F.E.; Heath, C., Jr. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am. J. Respir. Crit. Care Med. 1995, 151, 669. [Google Scholar] [CrossRef] [PubMed]
- Dockery, D.W.; Rd, P.C.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Jr, F.B.; Speizer, F.E. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 1993, 329, 1753. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Kong, Q.; Ge, W.; Zhang, S.; Fu, L. Characterization of personal exposure concentration of fine particles for adults and children exposed to high ambient concentrations in Beijing, China. J. Environ. Sci. 2010, 22, 1757–1764. [Google Scholar] [CrossRef] [PubMed]
- Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z.J.; Weinmayr, G.; Hoffmann, B.; Wolf, K.; Samoli, E.; Fischer, P.; Nieuwenhuijsen, M.; et al. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 2014, 383, 785–795. [Google Scholar] [CrossRef]
- Yin, P.; Brauer, M.; Cohen, A.; Burnett, R.T.; Liu, J.; Liu, Y.; Zhou, M. Ambient fine particulate matter exposure and cardiovascular mortality in China: A prospective cohort study. Lancet 2015, 386, S6. [Google Scholar] [CrossRef]
- Cao, J.; Xu, H.; Xu, Q.; Chen, B.; Kan, H. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environ. Health Perspect 2012, 120, 373–378. [Google Scholar] [CrossRef] [Green Version]
- WHO. Health Risk of Particulate Matter from Long Range Transboundary Air Pollution (Preliminary Assessment); WHO: Geneva, Switzerland, 1999. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N.; Seinfeld, J.H.; Pandis, S.N. Atmospheric chemistry and physics: From air pollution to climate change. Environ. Sci. Policy Sustain. Dev. 1998, 40, 26. [Google Scholar] [CrossRef]
- Tzanis, C.; Varotsos, C.; Christodoulakis, J.; Tidblad, J. On the corrosion and soiling effects on materials by air pollution in Athens, Greece. Atmos. Chem. Phys. 2011, 11, 12039–12048. [Google Scholar] [CrossRef] [Green Version]
- Bench, G. Measurement of contemporary and fossil carbon contents of PM2.5 aerosols: Results from Turtleback Dome, Yosemite National Park. Environ. Sci. Technol. 2004, 38, 2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Anderson, C.F.; Grimmett, M.E.; Domalewski, C.J.; Cui, H. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. WIREs Nanomed. Nanobiotechnol. 2020, 12, e1586. [Google Scholar] [CrossRef] [PubMed]
- Štanfel, D.; Kalogjera, L.; Ryazantsev, S.V.; Hlača, K.; Radtsig, E.Y.; Teimuraz, R.; Hrabač, P. The Role of Seawater and Saline Solutions in Treatment of Upper Respiratory Conditions. Mar. Drugs 2022, 20, 330. [Google Scholar] [CrossRef]
- Zhao, S.; Tie, X.; Cao, J.; Zhang, Q. Impacts of mountains on black carbon aerosol under different synoptic meteorology conditions in the Guanzhong region, China. Atmos. Res. 2015, 164–165, 286–296. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S.; Zheng, Y.; Wang, S.; Chen, B. Numerical Study of the Effects of Topography and Urbanization on the Local Atmospheric Circulations over the Beijing-Tianjin-Hebei, China. Adv. Meteorol. 2015, 2015, 16. [Google Scholar] [CrossRef] [Green Version]
- Bei, N.; Zhao, L.; Wu, J.; Li, X.; Feng, T.; Li, G. Impacts of sea-land and mountain-valley circulations on the air pollution in Beijing-Tianjin-Hebei (BTH): A case study. Environ. Pollut. 2018, 234, 429–438. [Google Scholar] [CrossRef]
- Banta, R.M.; Senff, C.J.; Nielsen-Gammon, J.; Darby, L.S.; Ryerson, T.B.; Alvarez, R.J.; Sandberg, S.P.; Williams, E.J.; Trainer, M. A Bad Air Day in Houston. Bull. Am. Meteorol. Soc. 2005, 86, 657–670. [Google Scholar] [CrossRef]
- Zhang, F.; Bei, N.; Nielsen-Gammon, J.W.; Li, G.; Zhang, R.; Stuart, A.; Aksoy, A. Impacts of meteorological uncertainties on ozone pollution predictability estimated through meteorological and photochemical ensemble forecasts. J. Geophys. Res. Atmos. 2007, 112, D04304. [Google Scholar] [CrossRef]
- Ding, A.; Wang, T.; Zhao, M.; Wang, T.; Li, Z. Simulation of sea-land breezes and a discussion of their implications on the transport of air pollution during a multi-day ozone episode in the Pearl River Delta of China. Atmos. Environ. 2004, 38, 6737–6750. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, C.; Ma, Z.; Li, Z.; Li, J.; Wang, K. Observed decrease of summer sea-land breeze in Shanghai from 1994 to 2014 and its association with urbanization. Atmos. Res. 2019, 227, 198–209. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, C. Dominance of Shortwave Radiative Heating in the Sea-Land Breeze Amplitude and its Impacts on Atmospheric Visibility in Tokyo, Japan. J. Geophys. Res. Atmos. 2020, 125, e2019JD031541. [Google Scholar] [CrossRef]
- Nakata, M.; Kajino, M.; Sato, Y. Effects of Mountains on Aerosols Determined by AERONET/DRAGON/J-ALPS Measurements and Regional Model Simulations. Earth Space Sci. 2021, 8, e2021EA001972. [Google Scholar] [CrossRef]
- Geng, G.; Xiao, Q.; Liu, S.; Liu, X.; Cheng, J.; Zheng, Y.; Xue, T.; Tong, D.; Zheng, B.; Peng, Y.; et al. Tracking Air Pollution in China: Near Real-Time PM2.5 Retrievals from Multisource Data Fusion. Environ. Sci. Technol. 2021, 55, 12106–12115. [Google Scholar] [CrossRef]
- Huang, C.; Hu, J.; Xue, T.; Xu, H.; Wang, M. High-Resolution Spatiotemporal Modeling for Ambient PM(2.5) Exposure Assessment in China from 2013 to 2019. Environ. Sci. Technol. 2021, 55, 2152–2162. [Google Scholar] [CrossRef]
- Zhang, Y. All-Cause Mortality Risk and Attributable Deaths Associated with Long-Term Exposure to Ambient PM(2.5) in Chinese Adults. Environ. Sci. Technol. 2021, 55, 6116–6127. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, Y.; Gong, S.; Pan, J.; Zang, S.; Wang, W.; Li, Z.; Matsunaga, T.; Yamaguchi, Y.; Bai, Y. PM2.5-related premature deaths and potential health benefits of controlled air quality in 34 provincial cities of China during 2001–2017. Environ. Impact Assess. Rev. 2022, 97, 106883. [Google Scholar] [CrossRef]
- Cheng, W.; Zhou, C.; Chai, H.; Zhao, S.; Liu, H.; Zhou, Z. Research and compilation of the geomorphologic atlas of the People’s Republic of China (1:1,000,000). J. Geogr. Sci. 2011, 21, 89–100. [Google Scholar] [CrossRef]
- Zhao, S.; Cheng, W. Transitional relation exploration for typical loess geomorphologic types based on slope spectrum characteristics. Earth Surf. Dynam. 2014, 2, 433–441. [Google Scholar] [CrossRef]
- Fang, Y.P.; Ying, B. Spatial distribution of mountainous regions and classifications of economic development in China. J. Mt. Sci. 2016, 13, 1120–1138. [Google Scholar] [CrossRef]
- Jia, Y.; Tang, X.; Tang, F.; Yang, Y. Spatial-temporal evolution of landscape pattern in the middle and lower reaches of the Yangtze River basin from 1995 to 2015. J. Nanjing Univ. 2020, 44, 185–194. [Google Scholar]
- Wang, N.; Cheng, W.; Wang, B.; Liu, Q.; Zhou, C. Geomorphological regionalization theory system and division methodology of China. J. Geogr. Sci. 2020, 30, 212–232. [Google Scholar] [CrossRef]
- Ferranti, J.D. Digital Elevation Data. 2022. Available online: http://viewfinderpanoramas.org/dem3.html (accessed on 10 March 2022).
- Wang, Y.; Fu, M. The Distribution of Main Mountains in China; The Geological Publishing House: Beijing, China, 1997. [Google Scholar]
- Wang, X.; Wang, Z.; Fang, J. Mountain ranges and peaks in China. Biodivers. Sci. 2004, 12, 206–212. [Google Scholar]
- Jia, Y. Research on the National Standard of “Name Codes of Mountains and Peaks in China”. In Proceedings of the 2001 Annual Conference of China Geographic Information System Association; Geographic Information System Association: Beijing, China, 2001; pp. 131–135. [Google Scholar]
- Yang, J.; Huang, X. The 30m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, D.; Jin, C.; Wang, A.; Wu, J.; Yuan, F. Analysis of impacts of climate variability and human activity on streamflow for a river basin in northeast China. J. Hydrol. 2011, 410, 239–247. [Google Scholar] [CrossRef]
- Wang, W.; Yi, Z.; Chen, D. Mann-Kendall Mutation Analysis of Temporal Variation of Apparent Stress in Qinba Mountains and Its Adjacent Areas. IOP Conf. Ser. Earth Environ. Sci. 2021, 660, 012112. [Google Scholar] [CrossRef]
- Meng, K.; Xu, X.; Xu, X.; Wang, H.; Liu, X.; Jiao, Y. The Causes of “Vulnerable Regions” to Air Pollution in Winter in the Beijing-Tianjin-Hebei Region: A Topographic–Meteorological Impact Model Based on Adaptive Emission Constraint Technique. Atmosphere 2019, 10, 719. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Yinjun, W.; Tianliang, Z.; Cheng, X.; Meng, Y.; Ding, G. “Harbor” effect of large topography on haze distribution in eastern China and its climate modulation on decadal variations in haze China (in Chinese). Chin. Sci. Bull. 2015, 60, 1132–1143. [Google Scholar]
- Lu, D.; Xu, J.; Yue, W.; Mao, W.; Yang, D.; Wang, J. Response of PM2.5 pollution to land use in China. J. Clean. Prod. 2020, 244, 118741. [Google Scholar] [CrossRef]
NO. | Geomorphologic Types | Relief Amplitude |
---|---|---|
1 | Plains | <30 m |
2 | Platforms | >30 m |
3 | Hills | <200 m |
4 | Low-relief mountains | 200–500 m |
5 | Middle-relief mountains | 500–1000 m |
6 | High-relief mountains | 1000–2500 m |
7 | Highest-relief mountains | >2500 m |
Level of Mountains | Mountains Name | 15 km | 30 km | 45 km | 60 km | 75 km | 90 km | 105 km |
---|---|---|---|---|---|---|---|---|
Level I Mountains | All Level I mountains | 0.59 | 3.17 | 5.57 | 7.32 | 8.32 | 10.16 | 11.76 |
Level I Mountains | Kunlun Mountains (Northern) | 13.09 | 17.62 | 21.65 | 25.29 | 28.21 | ||
Level II Mountains | All Level II mountains | 2.23 | 3.57 | 4.21 | 5.02 | 5.85 | 6.61 | 7.22 |
Level II Mountains | T’aihang Mountains | 12.76 | 16.77 | 20.78 | 23.41 | 24.93 | 26.24 | |
Level II Mountains | Tianshan Mountains | 11.74 | 17.08 | 19.49 | 19.89 | 21.41 | ||
Level II Mountains | Luliang Mountains | 16.25 | 15.67 | 13.87 | 12.19 | 11.27 | 11.90 | |
Level II Mountains | Qinling Mountains | 10.25 | 13.80 | 15.35 | 16.14 | 15.49 | 15.02 | 14.59 |
Level II Mountains | Bogda Mountains | 10.38 | 13.40 | 15.20 | ||||
Level II Mountains | Qilian Mountains | 11.94 | 13.90 | 14.66 | 14.81 | |||
Level II Mountains | Altun Mountains | 11.59 | ||||||
Level II Mountains | Qimantag Mountains | 10.40 | ||||||
Level III Mountains | All Level III mountains | 3.42 | 3.87 | 4.1 | 4.35 | 4.47 | 4.48 | 5.18 |
Level III Mountains | Hora Mountains | 19.62 | 24.55 | 25.17 | 29.09 | 32.30 | 31.79 | 29.49 |
Level III Mountains | Taiyue Mountains | 28.23 | 29.50 | 20.83 | 10.48 | |||
Level III Mountains | Longmen Mountains | 13.92 | 18.63 | 21.37 | 23.68 | 24.73 | ||
Level III Mountains | Fangdou Mountains | 13.28 | 16.77 | 19.43 | 20.32 | 13.99 | 14.50 | 14.87 |
Level III Mountains | Daqingshan Mountains | 15.20 | 17.47 | 17.49 | 15.61 | 13.90 | 12.92 | |
Level III Mountains | Zhongtiao Mountains | 16.71 | 10.15 | 14.74 | 15.82 | |||
Level III Mountains | Yanshan Mountains | 11.40 | 14.58 | |||||
Level III Mountains | Hengshan Mountains | 14.08 | 10.37 | |||||
Level III Mountains | Daliang Mountains | 10.69 | 13.67 | 11.62 | ||||
Level III Mountains | Mufu Mountains | 10.63 | 13.59 | |||||
Level III Mountains | Wudang Mountains | 11.02 | 12.44 | |||||
Level III Mountains | Tolai Mountains | 10.07 | 11.50 | 12.31 | ||||
Level III Mountains | Qionglai Mountains | 10.70 | 12.25 | |||||
Level III Mountains | Ayirariju Mountains | 11.89 | ||||||
Level III Mountains | Daxue Mountains | 10.06 | 11.64 | |||||
Level III Mountains | Xionger Mountains | 11.40 | ||||||
Level III Mountains | Helan Mountains | 11.40 | ||||||
Level III Mountains | Qianshan Mountains | 10.75 | 11.37 |
Mountains’ Level | Mountains’ Name | UFk Value | The Starting Position (m) | △ DEM (m) | Max PM2.5 Value ① (μg/m3) | Max PM2.5 Value ② (μg/m3) | Mean PM2.5 Value ① (μg/m3) | Mean PM2.5 Value ② (μg/m3) | Max PM2.5 Pollution Blocking Effects (μg/m3) |
---|---|---|---|---|---|---|---|---|---|
All typical mountains | −99.41 ** | 163 | 228 | 102.31 | 98.38 | 52.83 | 59.71 | 39.30% | |
Level I | Kunlun Mountains (North) | −93.22 ** | 1963 | 832 | 102.31 | 102.31 | 62.19 | 62.47 | 38.93% |
Level II | Lüliang Mountains | −72.07 ** | 650 | 397 | 96.64 | 96.64 | 63.71 | 65.15 | 32.59% |
Level II | Qilian Mountains | −85.56 ** | 1745 | 649 | 52.92 | 52.92 | 41.33 | 37.39 | 29.34% |
Level II | Taihang Mountains | −68.07 ** | 143 | 208 | 98.38 | 98.38 | 52.83 | 75.31 | 23.45% |
Level II | Qingling Mountains | −84.93 ** | 475 | 156 | 85.55 | 85.54 | 71.46 | 67.45 | 21.15% |
Level II | Altuns Mountains | −102.40 ** | 845 | 42 | 69.04 | 65.35 | 56.67 | 60.76 | 7.04% |
Level III | Mufu Mountains | −56.97 ** | 332 | 329 | 71.84 | 71.83 | 61.54 | 45.59 | 36.54% |
Level III | Daqingshan Mountains | −53.14 ** | 1057 | 81 | 52.42 | 52.42 | 30.74 | 33.31 | 36.46% |
Level III | Longmen Mountains | −93.62 ** | 604 | 240 | 81.48 | 81.47 | 49.32 | 53.37 | 34.50% |
Level III | Helan Mountains | −62.71 ** | 1183 | 203 | 59.60 | 59.60 | 41.63 | 40.61 | 31.86% |
Level III | Fangdou Mountains | −50.38 ** | 179 | 92 | 66.48 | 66.48 | 54.36 | 45.69 | 31.28% |
Level III | Yanshan Mountains | −65.13 ** | 58 | 110 | 65.27 | 65.27 | 39.61 | 47.22 | 27.65% |
Level III | Hengshan Mountains | −72.91 ** | 311 | 149 | 72.41 | 72.40 | 56.01 | 54.18 | 25.17% |
Level III | Huala Mountains | −78.32 ** | 1191 | 324 | 72.26 | 72.26 | 57.46 | 58.54 | 18.99% |
Level III | Da Xueshan Mountains | −88.78 ** | 652 | 64 | 60.33 | 60.06 | 57.69 | 49.41 | 17.73% |
Level III | Qionglai Mountains | −82.10 ** | 544 | 95 | 85.88 | 85.88 | 75.01 | 72.30 | 15.81% |
Level III | Wudang Mountains | −75.54 ** | 131 | 49 | 66.09 | 62.18 | 58.30 | 58.45 | 6.00% |
Level III | Xiong’er Mountains | −42.36 ** | 121 | 0 | 80.34 | 77.06 | 76.77 | 76.77 | 0.37% |
Level III | Taiyue Mountains | −66.65 ** | 435 | 0 | 87.75 | 85.68 | 85.50 | 85.50 | 0.21% |
Level III | Daliang Mountains | −98.49 ** | 249 | 0 | 75.87 | 73.94 | 73.94 | 73.94 | 0.00% |
Level III | Zhongtiao Mountains | −68.27 ** | 122 | 0 | 81.25 | 80.31 | 80.31 | 80.31 | 0.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Xiao, J.; Yang, J.; Cai, S.; Liang, M.; Zhou, P. Quantitatively Disentangling the Geographical Impacts of Topography on PM2.5 Pollution in China. Remote Sens. 2022, 14, 6309. https://doi.org/10.3390/rs14246309
Wen Y, Xiao J, Yang J, Cai S, Liang M, Zhou P. Quantitatively Disentangling the Geographical Impacts of Topography on PM2.5 Pollution in China. Remote Sensing. 2022; 14(24):6309. https://doi.org/10.3390/rs14246309
Chicago/Turabian StyleWen, Youyue, Jianneng Xiao, Jian Yang, Saoman Cai, Minxuan Liang, and Peng Zhou. 2022. "Quantitatively Disentangling the Geographical Impacts of Topography on PM2.5 Pollution in China" Remote Sensing 14, no. 24: 6309. https://doi.org/10.3390/rs14246309
APA StyleWen, Y., Xiao, J., Yang, J., Cai, S., Liang, M., & Zhou, P. (2022). Quantitatively Disentangling the Geographical Impacts of Topography on PM2.5 Pollution in China. Remote Sensing, 14(24), 6309. https://doi.org/10.3390/rs14246309