A Filtering Method for LiDAR Point Cloud Based on Multi-Scale CNN with Attention Mechanism
Abstract
:1. Introduction
2. Method
2.1. Point to Image Conversion
2.2. Attention Modules
2.2.1. Channel Attention Module
2.2.2. Spatial Attention Module
2.3. MSCNN-AM Model
3. Results
3.1. Datasets
3.1.1. ISPRS Filter Dataset
3.1.2. The Filter Dataset of Qinghai
3.2. Parameter Configuration
3.3. Accuracy Evaluation Indexes
3.4. Result Analysis
3.4.1. Result on ISPRS Dataset
3.4.2. Result on Dataset of Qinghai
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BN | batch normalization |
CNN | convolutional neural network |
CRF | conditional random Field |
CSF | cloth simulation filtering |
DCNN | deep convolutional neural network |
DEM | digital elevation model |
DNN | deep neural network |
DTM | digital terrain model |
FC | fully connected |
ISPRS | International Society for Photogrammetry and Remote Sensing |
KNN | k-nearest neighbor |
LiDAR | light detection and ranging |
MHC | multi-resolution hierarchical classification |
MLP | multi-layer perceptron |
MSCNN-AM | multi-scale convolutional neural network with attention mechanism |
ReLU | rectified linear unit |
RF | random forest |
SITA | scale-irrelevant and terrain-adaptive |
SVM | support vector machine |
References
- Meng, X.; Currit, N.; Zhao, K. Ground filtering algorithms for airborne LiDAR data: A review of critical issues. Remote Sens. 2010, 2, 833–860. [Google Scholar] [CrossRef] [Green Version]
- Sithole, G.; Vosselman, G. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 2004, 59, 85–101. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, B.; Devereux, B. State-of-the-art: DTM generation using airborne LIDAR data. Sensors 2017, 17, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X. Airborne LiDAR for DEM generation: Some critical issues. Prog. Phys. Geogr. 2008, 32, 31–49. [Google Scholar]
- Guo, Q.; Li, W.; Yu, H.; Alvarez, O. Effects of topographic variability and lidar sampling density on several DEM interpolation methods. Photogramm. Eng. Remote Sens. 2010, 76, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Rottensteiner, F.; Sohn, G.; Gerke, M.; Wegner, J.D.; Breitkopf, U.; Jung, J. Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 2014, 93, 256–271. [Google Scholar] [CrossRef]
- Wang, R. 3D building modeling using images and LiDAR: A review. Int. J. Image Data Fusion 2013, 4, 273–292. [Google Scholar] [CrossRef]
- Wang, R.; Peethambaran, J.; Chen, D. Lidar point clouds to 3-D urban models: A review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 606–627. [Google Scholar] [CrossRef]
- Sampath, A.; Shan, J. Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds. IEEE Trans. Geosci. Remote Sens. 2009, 48, 1554–1567. [Google Scholar] [CrossRef]
- Bakuła, K. Multispectral airborne laser scanning-a new trend in the development of LiDAR technology. Arch. Fotogram. Kartogr. I Teledetekcji 2015, 27, 25–44. [Google Scholar]
- Hyyppä, J.; Hyyppä, H.; Leckie, D.; Gougeon, F.; Yu, X.; Maltamo, M. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int. J. Remote Sens. 2008, 29, 1339–1366. [Google Scholar] [CrossRef]
- Wang, Y.; Hyyppä, J.; Liang, X.; Kaartinen, H.; Yu, X.; Lindberg, E.; Holmgren, J.; Qin, Y.; Mallet, C.; Ferraz, A. International benchmarking of the individual tree detection methods for modeling 3-D canopy structure for silviculture and forest ecology using airborne laser scanning. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5011–5027. [Google Scholar] [CrossRef]
- Hyyppä, J.; Yu, X.; Hyyppä, H.; Vastaranta, M.; Holopainen, M.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Vaaja, M.; Koskinen, J. Advances in forest inventory using airborne laser scanning. Remote Sens. 2012, 4, 1190–1207. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.; Gobakken, T. Lidar sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012, 121, 196–209. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR system with application to forest inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef] [Green Version]
- Drake, J.B.; Dubayah, R.O.; Clark, D.B.; Knox, R.G.; Blair, J.B.; Hofton, M.A.; Chazdon, R.L.; Weishampel, J.F.; Prince, S. Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sens. Environ. 2002, 79, 305–319. [Google Scholar] [CrossRef]
- Means, J.E.; Acker, S.A.; Fitt, B.J.; Renslow, M.; Emerson, L.; Hendrix, C.J. Predicting forest stand characteristics with airborne scanning lidar. Photogramm. Eng. Remote Sens. 2000, 66, 1367–1372. [Google Scholar]
- Wan, P.; Zhang, W.; Skidmore, A.K.; Qi, J.; Jin, X.; Yan, G.; Wang, T. A simple terrain relief index for tuning slope-related parameters of LiDAR ground filtering algorithms. ISPRS J. Photogramm. Remote Sens. 2018, 143, 181–190. [Google Scholar] [CrossRef]
- Chu, H.-J.; Wang, C.-K.; Huang, M.-L.; Lee, C.-C.; Liu, C.-Y.; Lin, C.-C. Effect of point density and interpolation of LiDAR-derived high-resolution DEMs on landscape scarp identification. GIScience Remote Sens. 2014, 51, 731–747. [Google Scholar] [CrossRef]
- Bremer, M.; Sass, O. Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event. Geomorphology 2012, 138, 49–60. [Google Scholar] [CrossRef]
- Cavalli, M.; Tarolli, P.; Marchi, L.; Dalla Fontana, G. The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology. Catena 2008, 73, 249–260. [Google Scholar] [CrossRef]
- Murphy, P.N.; Ogilvie, J.; Meng, F.R.; Arp, P. Stream network modelling using lidar and photogrammetric digital elevation models: A comparison and field verification. Hydrol. Processes Int. J. 2008, 22, 1747–1754. [Google Scholar] [CrossRef]
- Bayram, E.; Frossard, P.; Vural, E.; Alatan, A. Analysis of airborne LiDAR point clouds with spectral graph filtering. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1284–1288. [Google Scholar] [CrossRef]
- Li, Y.; Yong, B.; Van Oosterom, P.; Lemmens, M.; Wu, H.; Ren, L.; Zheng, M.; Zhou, J. Airborne LiDAR data filtering based on geodesic transformations of mathematical morphology. Remote Sens. 2017, 9, 1104. [Google Scholar] [CrossRef] [Green Version]
- Nie, S.; Wang, C.; Dong, P.; Xi, X.; Luo, S.; Qin, H. A revised progressive TIN densification for filtering airborne LiDAR data. Measurement 2017, 104, 70–77. [Google Scholar] [CrossRef]
- Briese, C. Extraction of digital terrain models. In Airborne and Terrestrial Laser Scanning; Whittles Publishing: Dunbeath, UK, 2010; pp. 135–167. [Google Scholar]
- Zhang, J.; Hu, X.; Dai, H.; Qu, S. DEM extraction from ALS point clouds in forest areas via graph convolution network. Remote Sens. 2020, 12, 178. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, N.; Mandlburger, G. LiDAR data filtering and DTM generation. In Topographic Laser Ranging and Scanning; CRC Press: Boca Raton, FL, USA, 2017; pp. 307–334. [Google Scholar]
- Zhao, X.; Guo, Q.; Su, Y.; Xue, B. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS J. Photogramm. Remote Sens. 2016, 117, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Li, Y.; Li, W.; Dai, H. A multiresolution hierarchical classification algorithm for filtering airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2013, 82, 1–9. [Google Scholar] [CrossRef]
- Yang, F.; Davoine, F.; Wang, H.; Jin, Z. Continuous conditional random field convolution for point cloud segmentation. Pattern Recognit. 2022, 122, 108357. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Lin, C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.; Yang, J.; Zhong, R. A bayesian-network-based classification method integrating airborne lidar data with optical images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 1651–1661. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, X.; Ning, X. SVM-based classification of segmented airborne LiDAR point clouds in urban areas. Remote Sens. 2013, 5, 3749–3775. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Guo, J.; Wu, H.; Li, Y.; Shi, B. Performance Comparison of Filtering Algorithms for High-Density Airborne LiDAR Point Clouds over Complex LandScapes. Remote Sens. 2021, 13, 2663. [Google Scholar] [CrossRef]
- Rizaldy, A.; Persello, C.; Gevaert, C.; Oude Elberink, S.; Vosselman, G. Ground and multi-class classification of airborne laser scanner point clouds using fully convolutional networks. Remote Sens. 2018, 10, 1723. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view convolutional neural networks for 3D shape recognition. In Proceedings of the IEEE International Conference on Computer Vision, Washington, DC, USA, 20–23 June 1995; pp. 945–953. [Google Scholar]
- Qi, C.R.; Su, H.; Nießner, M.; Dai, A.; Yan, M.; Guibas, L.J. Volumetric and multi-view cnns for object classification on 3d data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 17–19 June 1997; pp. 5648–5656. [Google Scholar]
- Maturana, D.; Scherer, S. Voxnet: A 3D convolutional neural network for real-time object recognition. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–October 2 2015; pp. 922–928. [Google Scholar]
- Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3D object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3D classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 652–660. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; p. 30. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Hu, X.; Yuan, Y. Deep-learning-based classification for DTM extraction from ALS point cloud. Remote Sens. 2016, 8, 730. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Martins, V.S.; Kaleita, A.L.; Gelder, B.K.; Nagel, G.W.; Maciel, D.A. Deep neural network for complex open-water wetland mapping using high-resolution WorldView-3 and airborne LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102215. [Google Scholar] [CrossRef]
- Chen, B.; Shi, S.; Gong, W.; Zhang, Q.; Yang, J.; Du, L.; Sun, J.; Zhang, Z.; Song, S. Multispectral LiDAR point cloud classification: A two-step approach. Remote Sens. 2017, 9, 373. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chang, B.; Li, Y.; Shi, B. Filtering airborne LiDAR point clouds based on a scale-irrelevant and terrain-adaptive approach. Measurement 2021, 171, 108756. [Google Scholar] [CrossRef]
Region | Sample | Terrain Features | Point Spacing (m) | All Points | Ground Points | Non Ground Points |
---|---|---|---|---|---|---|
Urban | Samp11 | Vegetation and buildings on steep slopes | 1–1.5 | 38,010 | 21,786 | 16,224 |
Samp12 | Cars, mixture of vegetation and buildings | 1–1.5 | 52,119 | 26,691 | 25,428 | |
Samp21 | Narrow bridge and low vegetation | 1–1.5 | 12,960 | 10,085 | 2875 | |
Samp22 | Bridge and gangway | 1–1.5 | 32,706 | 22,504 | 10,202 | |
Samp23 | Complex and large buildings, and data gaps | 1–1.5 | 25,095 | 13,223 | 11,872 | |
Samp24 | Ramp | 1–1.5 | 7492 | 5434 | 2059 | |
Samp31 | Disconnected terrain, low point influence | 1–1.5 | 28,862 | 15,556 | 13,306 | |
Samp41 | Data gaps and clump of low points | 1–1.5 | 11,231 | 5602 | 5629 | |
Samp42 | Railway station | 1–1.5 | 42,470 | 12,443 | 30,027 | |
Rural | Samp51 | Steep slopes with vegetation | 2–3.5 | 17,845 | 13,950 | 3895 |
Samp52 | Low vegetation, discontinuity, sharp ridge | 2–3.5 | 22,474 | 20,112 | 2362 | |
Samp53 | Discontinuity, vertical slopes | 2–3.5 | 34,378 | 32,989 | 1389 | |
Samp54 | Low resolution buildings | 2–3.5 | 8608 | 3983 | 4625 | |
Samp61 | Large buildings, embankment, data gaps | 2–3.5 | 35,060 | 33,854 | 1206 | |
Samp71 | Bridge and discontinuity | 2–3.5 | 15,645 | 13,875 | 1170 |
Group | Scenes | Sample |
---|---|---|
1 | Flat | 12, 31, 42, 54, 71 |
2 | Gentle Slope | 21, 22, 23, 24, 41 |
3 | Steep Slope | 11, 51, 52, 53, 61 |
Prediction | |||
Ground | Non-ground | ||
Truth | Ground | a | b |
Non-ground | c | d | |
Type I error | b/(a + b) | ||
Type II error | c/(c + d) | ||
Total error | (b + c)/(a + b + c + d) |
Method | Type I Error (%) | Type II Error (%) | Total Error (%) |
---|---|---|---|
CSF | 18.94 | 8.19 | 15.03 |
KNN | 1.12 | 21.82 | 4.51 |
DNN | 1.10 | 16.90 | 3.26 |
DCNN | 1.30 | 9.03 | 2.26 |
SITA | 1.60 | 7.90 | 2.58 |
MSCNN-AM | 0.93 | 7.83 | 1.91 |
Method | Type I Error (%) | Type II Error (%) | Total Error (%) |
---|---|---|---|
CSF | 0.57 | 0.41 | 0.46 |
KNN | 0.15 | 0.83 | 0.37 |
DNN | 0.21 | 0.46 | 0.29 |
DCNN | 0.31 | 0.63 | 0.41 |
SITA | 0.22 | 0.29 | 0.24 |
MSCNN-AM | 0.08 | 0.24 | 0.13 |
No. | Framework Setting | Type I Error (%) | Type II Error (%) | Total Error (%) |
---|---|---|---|---|
1 | Singlescale convolution | 1.71 | 8.25 | 2.43 |
2 | Multi-scale convolution | 1.36 | 8.38 | 2.24 |
3 | Multi-scale convolution with attention mechanism | 0.93 | 7.83 | 1.91 |
No. | Convolution Kernel Scale | Type I Error (%) | Type II Error (%) | Total Error (%) |
---|---|---|---|---|
1 | 3 × 3, 5 × 5, 7 × 7 | 0.93 | 7.83 | 1.91 |
2 | 3 × 3, 5 × 5, 9 × 9 | 0.96 | 7.84 | 1.95 |
3 | 3 × 3, 7 × 7, 9 × 9 | 1.17 | 7.67 | 2.26 |
4 | 5 × 5, 7 × 7, 9 × 9 | 1.50 | 7.16 | 2.22 |
No. | Framework Setting | Training |
---|---|---|
1 | Multi-scale convolution | 11,077 s |
2 | Multi-scale convolution with attention mechanism | 13,034 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wang, H.; Song, D. A Filtering Method for LiDAR Point Cloud Based on Multi-Scale CNN with Attention Mechanism. Remote Sens. 2022, 14, 6170. https://doi.org/10.3390/rs14236170
Wang B, Wang H, Song D. A Filtering Method for LiDAR Point Cloud Based on Multi-Scale CNN with Attention Mechanism. Remote Sensing. 2022; 14(23):6170. https://doi.org/10.3390/rs14236170
Chicago/Turabian StyleWang, Bin, Hao Wang, and Dongmei Song. 2022. "A Filtering Method for LiDAR Point Cloud Based on Multi-Scale CNN with Attention Mechanism" Remote Sensing 14, no. 23: 6170. https://doi.org/10.3390/rs14236170
APA StyleWang, B., Wang, H., & Song, D. (2022). A Filtering Method for LiDAR Point Cloud Based on Multi-Scale CNN with Attention Mechanism. Remote Sensing, 14(23), 6170. https://doi.org/10.3390/rs14236170