Performance Analysis of the Temperature and Humidity Profiles Retrieval for FY-3D/MWTHS in Arctic Regions
Abstract
:1. Introduction
2. Data
2.1. Data
2.1.1. MWHTS Observations
2.1.2. ERA5 Reanalysis Data
2.1.3. NCEP Reanalysis and Forecast Data
2.2. Data Preprocessing
3. Algorithm and Experiment Design
3.1. Deep Neural Networks
3.2. Long Short-Term Memory
3.3. The Physical Retrieval Algorithm
4. Results Analysis and Discussion
4.1. Comparison of Retrieval Results over Sea Ice
4.2. Comparison of Retrieval Results over Land
4.3. Retrieval Results over Mixed Ice–Water
4.4. Retrieval Results over Mixed Surface
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Comparison of Retrieval Results over Different Surface Types
References
- Bjorkman, A.D.; García Criado, M.; Myers-Smith, I.H.; Ravolainen, V.; Jónsdóttir, I.S.; Westergaard, K.B.; Lawler, J.P.; Aronsson, M.; Bennett, B.; Gardfjell, H. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio A J. Hum. Environ. 2020, 49, 678–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weller, G. Impacts of climate change in the Arctic. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia, 9–13 July 2001. [Google Scholar]
- Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 2018, 13, 105005. [Google Scholar] [CrossRef]
- England, M.; Eisenman, I.; Lutsko, N.; Wagner, T.J.W. The recent emergence of Arctic Amplification. Geophys. Res. Lett. 2021, 48, e2021GL094086. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhong, W.; Diao, Y.; Cao, Y. The rapidly changing Arctic and its impact on global climate. J. Ocean Univ. China 2019, 18, 537–541. [Google Scholar] [CrossRef]
- Overland, J.; Dunlea, E.; Box, J.E.; Corell, R.; Forsius, M.; Kattsov, V.; Olsen, M.S.; Pawlak, J.; Reiersen, L.-O.; Wang, M. The urgency of Arctic change. Polar Sci. 2019, 21, 6–13. [Google Scholar] [CrossRef]
- Ebell, K.; Orlandi, E.; Hünerbein, A.; Lhnert, U.; Crewell, S. Combining ground-based with satellite-based measurements in the atmospheric state retrieval: Assessment of the information content. J. Geophys. Res. Atmos. 2013, 118, 6940–6956. [Google Scholar] [CrossRef]
- Mccarthy, M.P.; Thorne, P.W.; Titchner, H.A. An analysis of tropospheric humidity trends from radiosondes. J. Clim. 2009, 22, 5820–5838. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Liang, C.; Jiang, Y.; Luo, N.; Li, Z. A deep learning approach to improve the retrieval of temperature and humidity profiles from a ground-based microwave radiometer. IEEE Trans. Geosci. Electron. 2020, 58, 8427–8437. [Google Scholar] [CrossRef]
- Liu, K.; He, J.; Chen, H. Precipitation Retrieval from Fengyun-3D Microwave Humidity and Temperature Sounder Data Using Machine Learning. Remote Sens. 2022, 14, 848. [Google Scholar] [CrossRef]
- Zhu, L.; Bao, Y.; Petropoulos, G.P.; Zhang, P.; Lu, F.; Lu, Q.; Wu, Y.; Xu, D. Temperature and Humidity Profiles Retrieval in a Plain Area from Fengyun-3D/HIRAS Sensor Using a 1D-VAR Assimilation Scheme. Remote Sens. 2020, 12, 435. [Google Scholar] [CrossRef] [Green Version]
- Xue, Q.; Guan, L.; Shi, X. One-Dimensional Variational Retrieval of Temperature and Humidity Profiles from the FY4A GIIRS. Adv. Atmos. Sci. 2022, 39, 471–486. [Google Scholar] [CrossRef]
- Gómez, A.T.; Heygster, G.; Melsheimer, C.; Spreen, G. Towards a Merged Total Water Vapour Retrieval from AMSU-B and AMSR-E Data in the Arctic Region. In Proceedings of the IGARSS 2018—IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Liu, Q.; Weng, F. One-dimensional variational retrieval algorithm of temperature, water vapor, and cloud water profiles from advanced microwave sounding unit (AMSU). IEEE Trans. Geosci. Electron. 2005, 43, 1087–1095. [Google Scholar]
- He, Q.; Wang, Z.; He, J. Temperature and humidity profiles retrieving over land using clear sky measurements of microwave humidity-temperature sounder on Chinese FY-3C satellite. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016. [Google Scholar]
- He, Q.; Wang, Z.; He, J. Inversion of the clear atmosphere temperature and humidity profiles based on FY-3C/MWHTS measurements. Chin. J. Radio Sci. 2016, 31, 772–778. [Google Scholar]
- He, Q.; Wang, Z.; He, J. Bias correction for retrieval of atmospheric parameters from the Microwave Humidity and Temperature Sounder onboard the Fengyun-3C satellite. Atmosphere 2016, 7, 156. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Wang, X.; Weng, F.; Li, G. Assessments of Chinese Fengyun Microwave Temperature Sounder (MWTS) measurements for weather and climate applications. J. Atmos. Ocean. Technol. 2011, 28, 1206–1227. [Google Scholar] [CrossRef]
- Mathew, N.; Heygster, G.; Rosenkranz, P. Retrieval of emissivity and temperature profile in polar regions. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006. [Google Scholar]
- Cimini, D.; Westwater, E.R.; Gasiewski, A.J. Temperature and humidity profiling in the Arctic using ground-based millimeter-wave radiometry and 1DVAR. J. IEEE Trans. Geosci. Remote Sens. 2009, 48, 1381–1388. [Google Scholar] [CrossRef]
- Karbou, F.; Aires, F.; Prigent, C.; Eymard, L. Potential of Advanced Microwave Sounding Unit-A (AMSU-A) and AMSU-B measurements for atmospheric temperature and humidity profiling over land. J. Geophys. Res. Atmos. 2005, 110, D07019. [Google Scholar] [CrossRef] [Green Version]
- Gangwar, R.K.; Mathur, A.K.; Gohil, B.S.; Sujit, B. Neural network based retrieval of atmospheric temperature profile using AMSU-A observations. Int. J. Atmos. Sci. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Songyan, G.; Yang, G.; Ran, Y.; Naimeng, L.; Xuebao, W. The Performance of Microwave Sounders Board on FY-3C Satellite. Adv. Meteorol. Sci. Technol. 2016, 6, 76–82. [Google Scholar]
- He, Q.; Wang, Z.; Li, J. Application of the deep neural network in retrieving the atmospheric temperature and humidity profiles from the Microwave Humidity and Temperature Sounder onboard the Feng-Yun-3 satellite. Sensors 2021, 21, 4673. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, H.; Bormann, N.; Geer, A.J.; Lu, Q.; English, S.J. Evaluation and Assimilation of the Microwave Sounder MWHS-2 Onboard FY-3C in the ECMWF Numerical Weather Prediction System. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1–34. [Google Scholar] [CrossRef]
- Lindskog, M.; Dybbroe, A.; Randriamampianina, R. Use of microwave radiances from Metop-C and Fengyun-3 C/D satellites for a northern European limited-area data assimilation system. Adv. Atmos. Sci. 2021, 38, 1415–1428. [Google Scholar] [CrossRef]
- Jiao, D.; Xu, N.; Yang, F.; Xu, K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. J. Sci. Rep. 2021, 11, 17956. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Guo, J.; Han, Y.; Observatory, S.M. Preliminarily assessment of ERA5 reanalysis data. J. Mar. Meteorol. 2018, 38, 91–99. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; Schepers, D.; et al. ERA5 hourly data on single levels from 1979 to present. Copernic. Clim. Change Serv. (C3S) Clim. Data Store (CDS) 2018, 10. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; The, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2016, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Q.; Zheng, K.; Xia, Q.; Kang, C. Forecast aggregated supply curves in power markets based on LSTM model. IEEE Trans. Power Syst. 2021, 36, 5767–5779. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Rundle, D.; Rayer, P.; Matricardi, M.; Geer, A.; Lupu, C.; Brunel, P.; Vidot, J. RTTOV-11 Science and Validation Report; NWP-SAF Report; Met Office: Exeter, UK, 2013; pp. 1–62. [Google Scholar]
- Hewison, T.J. 1D-VAR retrieval of temperature and humidity profiles from a ground-based microwave radiometer. J. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2163–2168. [Google Scholar] [CrossRef]
- Löhnert, U.; Crewell, S.; Simmer, C. An integrated approach toward retrieving physically consistent profiles of temperature, humidity, and cloud liquid water. J. Appl. Meteorol. Climatol. 2004, 43, 1295–1307. [Google Scholar] [CrossRef]
- Löhnert, U.; van Meijgaard, E.; Baltink, H.K.; Groß, S.; Boers, R. Accuracy assessment of an integrated profiling technique for operationally deriving profiles of temperature, humidity, and cloud liquid water. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Xie, A.; Qin, X.; Wang, Y.; Xu, B.; Wang, Y. An assessment of ERA5 reanalysis for Antarctic near-surface air temperature. J. Atmos. 2021, 12, 217. [Google Scholar] [CrossRef]
- Pelliccia, F.; Pacifici, F.; Bonafoni, S.; Basili, P.; Pierdicca, N.; Ciotti, P.; Emery, W.J. Neural networks for arctic atmosphere sounding from radio occultation data. J. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4846–4855. [Google Scholar] [CrossRef]
- Hu, J.; Bao, Y.; Liu, J.; Liu, H.; Petropoulos, G.P.; Katsafados, P.; Zhu, L.; Cai, X. Temperature and Relative Humidity Profile Retrieval from Fengyun-3D/HIRAS in the Arctic Region. J. Remote Sens. 2021, 13, 1884. [Google Scholar] [CrossRef]
- Mathew, N.; Heygster, G.; Melsheimer, C.; Kaleschke, L. Surface emissivity of artic sea ice at AMSU window frequencies. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2298–2306. [Google Scholar] [CrossRef]
Data Source | Variable | Time Range |
---|---|---|
FY-3D/MWHTS | Brightness temperatures Land–sea mask | January to December 2020 and February, April, June, and September 2021 |
ERA5 reanalysis data | Temperature Relative humidity Specific humidity 2 m temperature 2 m dewpoint temperature Surface pressure Skin temperature 10 m v wind component 10 m u wind component Sea ice cover | January to December 2020 and February, April, June, and September 2021 Temporal resolution 3 h |
NCEP reanalysis data | Temperature Relative humidity | February, April, June, and September 2021 Temporal resolution 6 h |
NCEP forecast data | Temperature Relative humidity | June 2021 Temporal resolution 6 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Tie, S.; He, Q.; Wang, W. Performance Analysis of the Temperature and Humidity Profiles Retrieval for FY-3D/MWTHS in Arctic Regions. Remote Sens. 2022, 14, 5858. https://doi.org/10.3390/rs14225858
Zhang L, Tie S, He Q, Wang W. Performance Analysis of the Temperature and Humidity Profiles Retrieval for FY-3D/MWTHS in Arctic Regions. Remote Sensing. 2022; 14(22):5858. https://doi.org/10.3390/rs14225858
Chicago/Turabian StyleZhang, Lanjie, Shengru Tie, Qiurui He, and Wenyu Wang. 2022. "Performance Analysis of the Temperature and Humidity Profiles Retrieval for FY-3D/MWTHS in Arctic Regions" Remote Sensing 14, no. 22: 5858. https://doi.org/10.3390/rs14225858
APA StyleZhang, L., Tie, S., He, Q., & Wang, W. (2022). Performance Analysis of the Temperature and Humidity Profiles Retrieval for FY-3D/MWTHS in Arctic Regions. Remote Sensing, 14(22), 5858. https://doi.org/10.3390/rs14225858