Hydrological Connectivity Improves the Water-Related Environment in a Typical Arid Inland River Basin in Xinjiang, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data
2.2.1. Remote Sensing Data
2.2.2. Ecological and Hydrochemical Data
2.2.3. Hydro-Meteorological Data
2.2.4. Socioeconomic Data
2.3. Data Processing
2.3.1. Hydrological Connectivity Index
2.3.2. Statistical Analysis
3. Results
3.1. Characteristics of Multi-Scale Changes in Hydrological Connectivity
3.1.1. Inter-Annual Variation Characteristics of Hydrological Connectivity
3.1.2. Seasonal Variations in Hydrological Connectivity
3.1.3. Identification of Key Nodes in Hydrological Connectivity
3.2. Characteristics and Dynamics of Water Quality in the Bosten Lake
3.3. Hydrological Connectivity and Its Water-Related Environmental Relationship
3.3.1. Anthropogenic and Climatic Drivers for IIC Dynamics
3.3.2. Relationship between Water Quality and Hydrological Characteristics
4. Discussion
4.1. Anthropogenic and Climatic Drivers for Hydrological Connectivity Dynamics
4.2. Ecological and Hydrochemical Characteristics of Lakes in Response to Hydrological Characteristics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boulton, A.J.; Rolls, R.J.; Jaeger, K.L.; Datry, T. Chapter 2.3—Hydrological Connectivity in Intermittent Rivers and Ephemeral Streams. In Intermittent Rivers and Ephemeral Streams; Datry, T., Bonada, N., Boulton, A., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 79–108. ISBN 978-0-12-803835-2. [Google Scholar]
- Hassani, A.; Azapagic, A.; Shokri, N. Global Predictions of Primary Soil Salinization under Changing Climate in the 21st Century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef] [PubMed]
- Keeley, A.T.H.; Beier, P.; Jenness, J.S. Connectivity Metrics for Conservation Planning and Monitoring. Biol. Conserv. 2021, 255, 109008. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.A.; Stigter, E.E.; Yao, T.; Immerzeel, W.W. Climate Change Decisive for Asia’s Snow Meltwater Supply. Nat. Clim. Chang. 2021, 11, 591–597. [Google Scholar] [CrossRef]
- Osman, M.B.; Tierney, J.E.; Zhu, J.; Tardif, R.; Hakim, G.J.; King, J.; Poulsen, C.J. Globally Resolved Surface Temperatures since the Last Glacial Maximum. Nature 2021, 599, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Chen, Y.; Guan, X.; Zhao, Y.; Chen, J.; Mao, W. Recent Climate and Hydrological Changes in a Mountain–Basin System in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Cockburn, C.; Lamouroux, N.; Pella, H.; Snelder, T.; Tockner, K.; Trautmann, T.; Watt, C.; Datry, T. Global Prevalence of Non-Perennial Rivers and Streams. Nature 2021, 594, 391–397. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the World’s Free-Flowing Rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef]
- Cooley, S.W.; Ryan, J.C.; Smith, L.C. Human Alteration of Global Surface Water Storage Variability. Nature 2021, 591, 78–81. [Google Scholar] [CrossRef]
- Schmitt, R.J.P.; Bizzi, S.; Castelletti, A.; Kondolf, G.M. Improved Trade-Offs of Hydropower and Sand Connectivity by Strategic Dam Planning in the Mekong. Nat. Sustain. 2018, 1, 96–104. [Google Scholar] [CrossRef]
- Tan, Z.; Li, Y.; Zhang, Q.; Liu, X.; Song, Y.; Xue, C.; Lu, J. Assessing Effective Hydrological Connectivity for Floodplains with a Framework Integrating Habitat Suitability and Sediment Suspension Behavior. Water Res. 2021, 201, 117253. [Google Scholar] [CrossRef]
- Belletti, B.; Garcia de Leaniz, C.; Jones, J.; Bizzi, S.; Börger, L.; Segura, G.; Castelletti, A.; van de Bund, W.; Aarestrup, K.; Barry, J.; et al. More than One Million Barriers Fragment Europe’s Rivers. Nature 2020, 588, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Lynch, L.M.; Sutfin, N.A.; Fegel, T.S.; Boot, C.M.; Covino, T.P.; Wallenstein, M.D. River Channel Connectivity Shifts Metabolite Composition and Dissolved Organic Matter Chemistry. Nat. Commun. 2019, 10, 459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, G.; English, C. Phytoplankton Blooms in Lake Winnipeg Linked to Selective Water-Gatekeeper Connectivity. Sci. Rep. 2019, 9, 8395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, E.P.; Jenkins, C.N.; Heilpern, S.; Maldonado-Ocampo, J.A.; Carvajal-Vallejos, F.M.; Encalada, A.C.; Rivadeneira, J.F.; Hidalgo, M.; Cañas, C.M.; Ortega, H.; et al. Fragmentation of Andes-to-Amazon Connectivity by Hydropower Dams. Sci. Adv. 2018, 4, eaao1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, N.S.-N.; Cheng, W.; Zou, L.; Cai, H. Effects of Landscape Fragmentation on Land Loss. Remote Sens. Environ. 2018, 209, 253–262. [Google Scholar] [CrossRef]
- Bracken, L.J.; Croke, J. The Concept of Hydrological Connectivity and Its Contribution to Understanding Runoff-Dominated Geomorphic Systems. Hydrol. Processes 2007, 21, 1749–1763. [Google Scholar] [CrossRef]
- Pringle, C. What Is Hydrologic Connectivity and Why Is It Ecologically Important? Hydrol. Processes 2003, 17, 2685–2689. [Google Scholar] [CrossRef]
- Wohl, E.; Brierley, G.; Cadol, D.; Coulthard, T.J.; Covino, T.; Fryirs, K.A.; Grant, G.; Hilton, R.G.; Lane, S.N.; Magilligan, F.J.; et al. Connectivity as an Emergent Property of Geomorphic Systems. Earth Surf. Processes Landf. 2019, 44, 4–26. [Google Scholar] [CrossRef] [Green Version]
- Coulthard, T.J.; Van De Wiel, M.J. Modelling Long Term Basin Scale Sediment Connectivity, Driven by Spatial Land Use Changes. Geomorphology 2017, 277, 265–281. [Google Scholar] [CrossRef]
- Jahanishakib, F.; Salmanmahiny, A.; Mirkarimi, S.H.; Poodat, F. Hydrological Connectivity Assessment of Landscape Ecological Network to Mitigate Development Impacts. J. Environ. Manag. 2021, 296, 113169. [Google Scholar] [CrossRef]
- Sun, C.; Chen, L.; Zhu, H.; Xie, H.; Qi, S.; Shen, Z. New Framework for Natural-Artificial Transport Paths and Hydrological Connectivity Analysis in an Agriculture-Intensive Catchment. Water Res. 2021, 196, 117015. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Engel, B.A.; Dai, L.; Wang, Y.; Wu, Y.; Yan, G.; Cong, L.; Zhai, J.; Zhang, Z.; Zhang, M. Capturing Hydrological Connectivity Structure of Wetlands with Indices Based on Graph Theory: A Case Study in Yellow River Delta. J. Clean. Prod. 2019, 239, 118059. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Q.; Xu, Y.; Lu, M.; Lin, Z.; Gao, B. Dynamic Impacts of Changes in River Structure and Connectivity on Water Quality under Urbanization in the Yangtze River Delta Plain. Ecol. Indic. 2022, 135, 108582. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Cai, Y.; Tan, Z.; Wu, H.; Liu, X.; Yao, J. Hydrodynamic Investigation of Surface Hydrological Connectivity and Its Effects on the Water Quality of Seasonal Lakes: Insights from a Complex Floodplain Setting (Poyang Lake, China). Sci. Total Environ. 2019, 660, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Goodwell, A.E.; Kumar, P.; Fellows, A.W.; Flerchinger, G.N. Dynamic Process Connectivity Explains Ecohydrologic Responses to Rainfall Pulses and Drought. Proc. Natl. Acad. Sci. USA 2018, 115, E8604–E8613. [Google Scholar] [CrossRef] [Green Version]
- Deng, X. Correlations between Water Quality and the Structure and Connectivity of the River Network in the Southern Jiangsu Plain, Eastern China. Sci. Total Environ. 2019, 664, 583–594. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, Y.; Hu, Y.; Cai, J.; Bai, C.; Shao, K.; Gao, G.; Zhang, Y.; Jeppesen, E.; Tang, X. Hydraulic Connectivity and Evaporation Control the Water Quality and Sources of Chromophoric Dissolved Organic Matter in Lake Bosten in Arid Northwest China. Chemosphere 2017, 188, 608–617. [Google Scholar] [CrossRef]
- Yu, X.; Hawley-Howard, J.; Pitt, A.L.; Wang, J.-J.; Baldwin, R.F.; Chow, A.T. Water Quality of Small Seasonal Wetlands in the Piedmont Ecoregion, South Carolina, USA: Effects of Land Use and Hydrological Connectivity. Water Res. 2015, 73, 98–108. [Google Scholar] [CrossRef]
- Peršić, V.; Čerba, D.; Bogut, I.; Horvatić, J. Trophic State and Water Quality in the Danube Floodplain Lake (Kopački Rit Nature Park, Croatia) in Relation to Hydrological Connectivity. In Eutrophication: Causes, Consequences and Control; Ansari, A.A., Singh Gill, S., Lanza, G.R., Rast, W., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2011; pp. 109–129. ISBN 978-90-481-9625-8. [Google Scholar]
- Maes, D.; Van Dyck, H. Climate-Driven Range Expansion through Anthropogenic Landscapes: Landscape Connectivity Matters. Glob. Change Biol. 2022, 28, 4920–4922. [Google Scholar] [CrossRef]
- Damschen, E.I.; Brudvig, L.A.; Burt, M.A.; Fletcher, R.J.; Haddad, N.M.; Levey, D.J.; Orrock, J.L.; Resasco, J.; Tewksbury, J.J. Ongoing Accumulation of Plant Diversity through Habitat Connectivity in an 18-Year Experiment. Science 2019, 365, 1478–1480. [Google Scholar] [CrossRef]
- Saco, P.M.; Rodríguez, J.F.; Moreno-de las Heras, M.; Keesstra, S.; Azadi, S.; Sandi, S.; Baartman, J.; Rodrigo-Comino, J.; Rossi, M.J. Using Hydrological Connectivity to Detect Transitions and Degradation Thresholds: Applications to Dryland Systems. Catena 2020, 186, 104354. [Google Scholar] [CrossRef]
- McLaughlin, D.L.; Diamond, J.S.; Quintero, C.; Heffernan, J.; Cohen, M.J. Wetland Connectivity Thresholds and Flow Dynamics from Stage Measurements. Water Resour. Res. 2019, 55, 6018–6032. [Google Scholar] [CrossRef]
- Okin, G.S.; Sala, O.E.; Vivoni, E.R.; Zhang, J.; Bhattachan, A. The Interactive Role of Wind and Water in Functioning of Drylands: What Does the Future Hold? BioScience 2018, 68, 670–677. [Google Scholar] [CrossRef] [Green Version]
- Ryser, R.; Hirt, M.R.; Häussler, J.; Gravel, D.; Brose, U. Landscape Heterogeneity Buffers Biodiversity of Simulated Meta-Food-Webs under Global Change through Rescue and Drainage Effects. Nat. Commun. 2021, 12, 4716. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Engel, B.A.; Zhang, G.; Wang, Y.; Wu, Y.; Zhang, M.; Zhang, Z. Hydrological Connectivity: One of the Driving Factors of Plant Communities in the Yellow River Delta. Ecol. Indic. 2020, 112, 106150. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, B.; Du, J.; Wang, Q.; Yu, S.; Yang, W. A Method for Evaluating the Longitudinal Functional Connectivity of a River–Lake–Marsh System and Its Application in China. Hydrol. Processes 2020, 34, 5278–5297. [Google Scholar] [CrossRef]
- Zuecco, G.; Rinderer, M.; Penna, D.; Borga, M.; van Meerveld, H.J. Quantification of Subsurface Hydrologic Connectivity in Four Headwater Catchments Using Graph Theory. Sci. Total Environ. 2019, 646, 1265–1280. [Google Scholar] [CrossRef]
- Deng, X. Influence of Water Body Area on Water Quality in the Southern Jiangsu Plain, Eastern China. J. Clean. Prod. 2020, 254, 120136. [Google Scholar] [CrossRef]
- Norton, A.J.; Rayner, P.J.; Wang, Y.-P.; Parazoo, N.C.; Baskaran, L.; Briggs, P.R.; Haverd, V.; Doughty, R. Hydrologic Connectivity Drives Extremes and High Variability in Vegetation Productivity across Australian Arid and Semi-Arid Ecosystems. Remote Sens. Environ. 2022, 272, 112937. [Google Scholar] [CrossRef]
- Souza, J.; Hooke, J. Influence of Seasonal Vegetation Dynamics on Hydrological Connectivity in Tropical Drylands. Hydrol. Processes 2021, 35, e14427. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Dai, L.; Xie, L.; Zhao, S.; Liu, Y.; Zhang, Z. Hydrological Connectivity Improves Soil Nutrients and Root Architecture at the Soil Profile Scale in a Wetland Ecosystem. Sci. Total Environ. 2021, 762, 143162. [Google Scholar] [CrossRef] [PubMed]
- Mainali, J.; Chang, H. Landscape and Anthropogenic Factors Affecting Spatial Patterns of Water Quality Trends in a Large River Basin, South Korea. J. Hydrol. 2018, 564, 26–40. [Google Scholar] [CrossRef]
- Dai, X.; Zhou, Y.; Ma, W.; Zhou, L. Influence of Spatial Variation in Land-Use Patterns and Topography on Water Quality of the Rivers Inflowing to Fuxian Lake, a Large Deep Lake in the Plateau of Southwestern China. Ecol. Eng. 2017, 99, 417–428. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Engel, B. Water Environment Carrying Capacity in Bosten Lake Basin. J. Clean. Prod. 2018, 199, 574–583. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Zhao, Y.; Yu, X. Hydroclimatic Changes of Lake Bosten in Northwest China during the Last Decades. Sci. Rep. 2018, 8, 9118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.; Wu, W.; Zhou, X.; Chen, Y.; Li, J. Investigation of the Dramatic Changes in Lake Level of the Bosten Lake in Northwestern China. Theor. Appl. Climatol. 2015, 119, 341–351. [Google Scholar] [CrossRef]
- Dai, J.; Tang, X.; Gao, G.; Chen, D.; Shao, K.; Cai, X.; Zhang, L. Effects of Salinity and Nutrients on Sedimentary Bacterial Communities in Oligosaline Lake Bosten, Northwestern China. Aquat. Microb. Ecol. 2013, 69, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Abuduwaili, J.; Liu, W. Environmentally Sensitive Grain-Size Component Records and Its Response to Climatic and Anthropogenic Influences in Bosten Lake Region, China. Sci. Rep. 2020, 10, 942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Shen, T.; Cheng, Y.; Zhao, T.; Li, L.; Qi, P. Temporal and Spatial Variations in the Bacterial Community Composition in Lake Bosten, a Large, Brackish Lake in China. Sci. Rep. 2020, 10, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Kinzelbach, W.; Li, W.; Dong, X. Box Model and 1D Longitudinal Model of Flow and Transport in Bosten Lake, China. J. Hydrol. 2015, 524, 62–71. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Worden, J.; de Beurs, K.M.; Koch, J.; Owsley, B.C. Application of Spectral Index-Based Logistic Regression to Detect Inland Water in the South Caucasus. Remote Sens. 2021, 13, 5099. [Google Scholar] [CrossRef]
- Xi, Y.; Peng, S.; Ciais, P.; Chen, Y. Future Impacts of Climate Change on Inland Ramsar Wetlands. Nat. Clim. Chang. 2021, 11, 45–51. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatem, A.J. WorldPop, Open Data for Spatial Demography. Sci. Data 2017, 4, 170004. [Google Scholar] [CrossRef] [PubMed]
- Chirachawala, C.; Shrestha, S.; Babel, M.S.; Virdis, S.G.P.; Wichakul, S. Evaluation of Global Land Use/Land Cover Products for Hydrologic Simulation in the Upper Yom River Basin, Thailand. Sci. Total Environ. 2020, 708, 135148. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Hortal, L.; Saura, S. Comparison and Development of New Graph-Based Landscape Connectivity Indices: Towards the Priorization of Habitat Patches and Corridors for Conservation. Landsc. Ecol. 2006, 21, 959–967. [Google Scholar] [CrossRef]
- Saura, S.; Torné, J. Conefor Sensinode 2.2: A Software Package for Quantifying the Importance of Habitat Patches for Landscape Connectivity. Environ. Model. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- Justeau-Allaire, D.; Vieilledent, G.; Rinck, N.; Vismara, P.; Lorca, X.; Birnbaum, P. Constrained Optimization of Landscape Indices in Conservation Planning to Support Ecological Restoration in New Caledonia. J. Appl. Ecol. 2021, 58, 744–754. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, X.; Du, S.; Li, C.; Siu, Y.L.; Rong, Y.; Yang, H. The Impact of Onshore Wind Power Projects on Ecological Corridors and Landscape Connectivity in Shanxi, China. J. Clean. Prod. 2020, 254, 120075. [Google Scholar] [CrossRef]
- Babí Almenar, J.; Bolowich, A.; Elliot, T.; Geneletti, D.; Sonnemann, G.; Rugani, B. Assessing Habitat Loss, Fragmentation and Ecological Connectivity in Luxembourg to Support Spatial Planning. Landsc. Urban Plan. 2019, 189, 335–351. [Google Scholar] [CrossRef]
- Heckmann, T.; Cavalli, M.; Cerdan, O.; Foerster, S.; Javaux, M.; Lode, E.; Smetanová, A.; Vericat, D.; Brardinoni, F. Indices of Sediment Connectivity: Opportunities, Challenges and Limitations. Earth-Sci. Rev. 2018, 187, 77–108. [Google Scholar] [CrossRef] [Green Version]
- Lehotský, M.; Rusnák, M.; Kidová, A.; Dudžák, J. Multitemporal Assessment of Coarse Sediment Connectivity along a Braided-Wandering River. Land Degrad. Dev. 2018, 29, 1249–1261. [Google Scholar] [CrossRef]
- Erős, T.; Schmera, D.; Schick, R.S. Network Thinking in Riverscape Conservation—A Graph-Based Approach. Biol. Conserv. 2011, 144, 184–192. [Google Scholar] [CrossRef]
- Ribeiro, R.; Carretero, M.A.; Sillero, N.; Alarcos, G.; Ortiz-Santaliestra, M.; Lizana, M.; Llorente, G.A. The Pond Network: Can Structural Connectivity Reflect on (Amphibian) Biodiversity Patterns? Landsc. Ecol. 2011, 26, 673–682. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Z.; Zhu, L.; Zhou, Y.; Liu, H.; Yu, T. Dynamic Monitoring of Desertification in Response to Climatic Factors: A Case Study from the Gelintan Oasis on the Southeastern Edge of the Tengger Desert, China. Geocarto Int. 2021, 1–21. [Google Scholar] [CrossRef]
- Notarnicola, C. Hotspots of Snow Cover Changes in Global Mountain Regions over 2000–2018. Remote Sens. Environ. 2020, 243, 111781. [Google Scholar] [CrossRef]
- Finkler, N.R.; Gücker, B.; Boëchat, I.G.; Ferreira, M.S.; Tanaka, M.O.; Cunha, D.G.F. Riparian Land Use and Hydrological Connectivity Influence Nutrient Retention in Tropical Rivers Receiving Wastewater Treatment Plant Discharge. Front. Environ. Sci. 2021, 9, 709922. [Google Scholar] [CrossRef]
- Niu, L.; Cai, H.; Jia, L.; Luo, X.; Tao, W.; Dong, Y.; Yang, Q. Metal Pollution in the Pearl River Estuary and Implications for Estuary Management: The Influence of Hydrological Connectivity Associated with Estuarine Mixing. Ecotoxicol. Environ. Saf. 2021, 225, 112747. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.; Li, W.; Chen, Y.; Liu, Y. Suitable Oasis Scales under a Government Plan in the Kaidu-Konqi River Basin of Northwest Arid Region, China. PeerJ 2018, 6, e4943. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Fang, C.; Lin, H.; Li, H.; Wu, B. Spatiotemporal Evolution of Wetland Eco-Hydrological Connectivity in the Poyang Lake Area Based on Long Time-Series Remote Sensing Images. Remote Sens. 2021, 13, 4812. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Li, Y.; Tan, Z.; Werner, A.D. Satellite Image-Based Investigation of the Seasonal Variations in the Hydrological Connectivity of a Large Floodplain (Poyang Lake, China). J. Hydrol. 2020, 585, 124810. [Google Scholar] [CrossRef]
- Deng, X.; Xu, Y.; Han, L.; Song, S.; Xu, G.; Xiang, J. Spatial-Temporal Changes in the Longitudinal Functional Connectivity of River Systems in the Taihu Plain, China. J. Hydrol. 2018, 566, 846–859. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Chen, B.; Wang, J.; Ye, H.; et al. Gainers and Losers of Surface and Terrestrial Water Resources in China during 1989–2016. Nat. Commun. 2020, 11, 3471. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Ma, R.; Sun, Z.; Ge, M.; Zeng, L.; Huang, F.; Bu, J.; Wang, Z. Determination of the Optimal Ecological Water Conveyance Volume for Vegetation Restoration in an Arid Inland River Basin, Northwestern China. Sci. Total Environ. 2021, 788, 147775. [Google Scholar] [CrossRef] [PubMed]
- Beel, C.R.; Heslop, J.K.; Orwin, J.F.; Pope, M.A.; Schevers, A.J.; Hung, J.K.Y.; Lafrenière, M.J.; Lamoureux, S.F. Emerging Dominance of Summer Rainfall Driving High Arctic Terrestrial-Aquatic Connectivity. Nat. Commun. 2021, 12, 1448. [Google Scholar] [CrossRef]
- Li, Z.; Sun, W.; Chen, H.; Xue, B.; Yu, J.; Tian, Z. Interannual and Seasonal Variations of Hydrological Connectivity in a Large Shallow Wetland of North China Estimated from Landsat 8 Images. Remote Sens. 2021, 13, 1214. [Google Scholar] [CrossRef]
- Deng, X.; Xu, Y.; Han, L. Impacts of Human Activities on the Structural and Functional Connectivity of a River Network in the Taihu Plain. Land Degrad. Dev. 2018, 29, 2575–2588. [Google Scholar] [CrossRef]
- Tang, X.; Guijuan, X.; Shao, K.; Bayartu, S.; Chen, Y.; Gao, G. Influence of Salinity on the Bacterial Community Composition in Lake Bosten, a Large Oligosaline Lake in Arid Northwestern China. Appl. Environ. Microbiol. 2012, 78, 4748–4751. [Google Scholar] [CrossRef] [Green Version]
- Ariken, M.; Zhang, F.; Liu, K.; Fang, C.; Kung, H.-T. Coupling coordination analysis of urbanization and eco-environment in Yanqi Basin based on multi-source remote sensing data. Ecol. Indic. 2020, 114, 106331. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Wang, H.; Zhang, S. Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia. Glob. Planet. Change 2015, 135, 28–37. [Google Scholar] [CrossRef]
- Fan, M.; Xu, J.; Chen, Y.; Li, W. Modeling streamflow driven by climate change in data-scarce mountainous basins. Sci. Total Environ. 2021, 790, 148256. [Google Scholar] [CrossRef]
- Li, N.; McLaughlin, D.; Kinzelbach, W.; Li, W.; Dong, X. Using an ensemble smoother to evaluate parameter uncertainty of an integrated hydrological model of Yanqi basin. J. Hydrol. 2015, 529, 146–158. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Chen, Y.; Fang, G.; Zhou, H.; Huang, W.; Liu, Y.; Wang, X.; Li, Z. Hydrological Connectivity Improves the Water-Related Environment in a Typical Arid Inland River Basin in Xinjiang, China. Remote Sens. 2022, 14, 4977. https://doi.org/10.3390/rs14194977
Liu C, Chen Y, Fang G, Zhou H, Huang W, Liu Y, Wang X, Li Z. Hydrological Connectivity Improves the Water-Related Environment in a Typical Arid Inland River Basin in Xinjiang, China. Remote Sensing. 2022; 14(19):4977. https://doi.org/10.3390/rs14194977
Chicago/Turabian StyleLiu, Chuanxiu, Yaning Chen, Gonghuan Fang, Honghua Zhou, Wenjing Huang, Yongchang Liu, Xuanxuan Wang, and Zhi Li. 2022. "Hydrological Connectivity Improves the Water-Related Environment in a Typical Arid Inland River Basin in Xinjiang, China" Remote Sensing 14, no. 19: 4977. https://doi.org/10.3390/rs14194977
APA StyleLiu, C., Chen, Y., Fang, G., Zhou, H., Huang, W., Liu, Y., Wang, X., & Li, Z. (2022). Hydrological Connectivity Improves the Water-Related Environment in a Typical Arid Inland River Basin in Xinjiang, China. Remote Sensing, 14(19), 4977. https://doi.org/10.3390/rs14194977