Novel Neuron-like Procedure of Weak Signal Detection against the Non-Stationary Noise Background with Application to Underwater Sound
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Background: The Use of Neural-like Functions for Mismatch Functions Construction
2.2. Description of the Research Method and Comparison of Location Signal Processing Procedures Based on Correlation and Neuron-like Criterion Functions
2.3. Criteria for Making a Decision on the Presence of a Signal Component in the Registered Implementation
- Bayes criterion (is also the minimum average risk criterion).
- The minimax criterion (is also the criterion for minimizing the maximum risk).
- Neumann–Pearson criterion.
3. Results
3.1. Stationary Gaussian Noise
3.2. Non-Stationary Gaussian Noise with an Incremental Trend
3.3. Non-Stationary Gaussian Noise with a Decreasing Trend
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coulson, R.; Glegg, S. Imaging of ocean noise. J. Acoust. Soc. Am. 1996, 100, 2736. [Google Scholar] [CrossRef]
- Mishachandar, B.; Vairamuthu, S. Diverse ocean noise classification using deep learning. Appl. Acoust. 2021, 181, 108141. [Google Scholar] [CrossRef]
- Miksis-Olds, J. Global trends in ocean noise. Adv. Exp. Med. Biol. 2015, 875, 713–718. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26611023 (accessed on 1 July 2022).
- Porter, M.; Henderson, L. Computation of ocean noise fields. J. Acoust. Soc. Am. 2013, 134, 4151. [Google Scholar] [CrossRef]
- Kuperman, W. Ocean noise: Lose it or use it. J. Acoust. Soc. Am. 2013, 133, 3504. [Google Scholar] [CrossRef]
- Guoli, W.; Hefeng, D.; Ganpan, K.; Junqiang, S. Shear-Wave Tomography Using Ocean Ambient Noise with Interference. Remote Sens. 2020, 12, 2969. [Google Scholar] [CrossRef]
- Askeland, B.; Ruud, B.O.; Hobak, H.; Mjelde, R. A seismic field test with a low-level acoustic combustion source and pseudo-noise codes. J. Appl. Geophys. 2008, 67, 66–73. [Google Scholar] [CrossRef]
- Claerbout, J.F.; Muir, F. Robust modeling with erratic data. Geophysics 1973, 38, 826–844. [Google Scholar] [CrossRef]
- Nadu, G. Classification Algorithms in Pattern Recognition. IEEE Trans. Audio Electroacoust. 1968, 16, 203–212. [Google Scholar] [CrossRef]
- Bai, J.; Yingst, D. Simultaneous inversion of velocity and density in time-domain full waveform inversion. In Proceedings of the SEG Denver 2014 Annual Meeting, Denver, CO, USA, 26–31 October 2014; pp. 922–927. [Google Scholar]
- Trees, H.V. Detection, Estimation, and Modulation Theory, Part I, Detection, Estimation, and Linear Modulation Theory; John Wiley & Sons: New York, NY, USA, 1968; p. 697. [Google Scholar] [CrossRef]
- Tikhonov, V.I. Optimal Signal Reception; Izdatel Radio Sviaz: Moscow, Russia, 1983; 390p. (In Russian) [Google Scholar]
- Kalinina, V.I.; Malekhanov, A.I.; Smirnov, I.P.; Khil’ko, A.I. Coherent marine seismoacoustics: New approaches to reconstructing bottom layer structures in shelf water areas. Bull. Russ. Acad. Sci. Phys. 2017, 81, 920–926. [Google Scholar] [CrossRef]
- Smirnov, I.P.; Kalinina, V.I.; Khil’ko, A.I. Reconstruction of the sea bottom parameters for coherent seismoacoustic sounding: I. Decision rules. Acoust. Phys. 2018, 64, 49–57. [Google Scholar] [CrossRef]
- Smirnov, I.P.; Kalinina, V.I.; Khil’ko, A.I. Reconstruction of sea bottom parameters for coherent seismoacoustic probing: II. Analysis of robustness. Acoust. Phys. 2018, 64, 205–214. [Google Scholar] [CrossRef]
- Kalinina, V.I.; Khil’ko, A.I.; Khil’ko, A.A.; Smirnov, I.P. Reconstruction of sea bottom parameters for coherent seismoacoustic probing: III. Signal accumulation and noise suppression. Acoust. Phys. 2019, 65, 30–40. [Google Scholar] [CrossRef]
- Kalinina, V.I.; Smirnov, I.P.; Khilko, A.I.; Malekhanov, A.I. Comparative analysis of the noise immunity of algorithms for reconstructing seabed geoacoustic parameters by the coherent sounding technique. Acoust. Phys. 2021, 67, 381–396. [Google Scholar] [CrossRef]
- Khobotov, A.G.; Kalinina, V.I.; Khilko, A.I. Investigation of the use of neuron-like procedures for processing coherent location signals. Opt. Mem. Neural Netw. 2021, 30, 327–337. [Google Scholar] [CrossRef]
- Teeling, E.C.; Jones, G.M.; Rossiter, S.J. Phylogeny, Genes, and Hearing: Implications for the Evolution of Echolocation in Bats, Bat Bioacoustics. Springer Handb. Audit. Res. 2016, 54, 25–54. [Google Scholar] [CrossRef]
- Tsagkogeorga, G.; Parker, J.; Stupka, E.; Cotton, J.A.; Rossiter, S.J. Phylogenomic analyses elucidate the evolutionary relationships of bats. Curr. Biol. 2013, 23, 2262–2267. [Google Scholar] [CrossRef]
- Do, M.N.; Lu, Y.M. Multidimensional filter banks and multiscale geometric representations. Found. Trends Signal Process. 2011, 5, 157–264. [Google Scholar] [CrossRef]
- Jones, G.; Teeling, E.C. The evolution of echolocation in bats. Trends Ecol. Evol. 2006, 21, 149–156. [Google Scholar] [CrossRef]
- Lewanzik, D.; Sundaramurthy, A.K.; Goerlitz, H.R. Insectivorous bats integrate social information about species identity, conspecific activity and prey abundance to estimate cost-benefit ratio of interactions. J. Anim. Ecol. 2019, 88, 1462–1473. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.R. Echolocation by Blind Men, Bats and Radar. Science 1944, 100, 589–590. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Han, L.; Gong, X.; Zhang, S.; Huang, X.; Zhang, P. MCMC Method of inverse problems using a neural network—Application in GPR crosshole fullwaveform inversion: A Numerical Simulation Study. Remote Sens. 2022, 14, 1320. [Google Scholar] [CrossRef]
- Bradbury, M.C.; Conley, D.C. Using artificial neural networks for the estimation of subsurface tidal currents from high-frequency radar surface current measurements. Remote Sens. 2021, 13, 3896. [Google Scholar] [CrossRef]
- Yan, J.; Meng, J.; Zhao, J. Real-time bottom tracking using side scan sonar data through one-dimensional convolutional neural networks. Remote Sens. 2020, 12, 37. [Google Scholar] [CrossRef]
- Wang, X.; Liu, A.; Zhang Yu Xue, F. Underwater acoustic target recognition: A combination of multi-dimensional fusion features and modified deep neural network. Remote Sens. 2019, 11, 1888. [Google Scholar] [CrossRef]
- Shriram, U.; Simmons, J.A. Echolocating bats perceive natural-size targets as a unitary class using micro-spectral ripples in echoes. Behav. Neurosci. 2019, 133, 297–304. [Google Scholar] [CrossRef]
- Grinnell, A.D. Hearing in bats: An overview. In Hearing in Bats; Springer: New York, NY, USA, 1995; pp. 1–36. [Google Scholar] [CrossRef]
- McCalloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Khobotov, A.G.; Khilko, A.I.; Romanova, V.I. Using free-dynamics neural-network structures with context-dependent parameters for observations in inhomogeneous nonstationary media. Radiophys. Quantum Electron. 2013, LVI, 104–124. [Google Scholar] [CrossRef]
- Altman, A.B.; Kleiman, S. A Term of Commutative Algebra; Worldwide Center of Mathematics, LLC.: Cambridge, MA, USA, 2013; p. 266. Available online: http://hdl.handle.net/1721.1/116075 (accessed on 11 March 2018).
- Khobotov, A.G.; Khilko, A.I.; Tel’nykh, A.A. Information approach to the digital recording of signals. Radiophys. Quantum Electron. 2020, 62, 618–626. [Google Scholar] [CrossRef]
- Vasiliev, K.K. Signal Processing Methods: A Textbook; UlGTU: Ulyanovsk, Russia, 2001; p. 80. ISBN 5-89146-200-0. (In Russian) [Google Scholar]
- Scott, C.D. Statistical Signal Processing; Rice University: Houston, TX, USA, 2011; p. 140. Available online: https://ftpmirror.your.org/pub/misc/cd3wd/1006/Statistical_Signal_Processing_stats_maths_dsp_cnx_x10232_.pdf (accessed on 4 February 2011).
- Khobotov, A.G.; Khilko, A.I.; Yakhno, V.G. Analysis of advantages of neuron-like systems in the procedure of signal comparison measure calculation. Opt. Mem. Neural Netw. 2008, 17, 299–307. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Mandelbrot, B.; Van Ness, J. Fractional Brownian Motions, Fractional Noises and Application. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Mandelbrot, B.; Hudson, R.L.; Grunwald, E. The (mis)behavior of markets. Math. Intell. 2005, 27, 77–79. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khobotov, A.G.; Kalinina, V.I.; Khil’ko, A.I.; Malekhanov, A.I. Novel Neuron-like Procedure of Weak Signal Detection against the Non-Stationary Noise Background with Application to Underwater Sound. Remote Sens. 2022, 14, 4860. https://doi.org/10.3390/rs14194860
Khobotov AG, Kalinina VI, Khil’ko AI, Malekhanov AI. Novel Neuron-like Procedure of Weak Signal Detection against the Non-Stationary Noise Background with Application to Underwater Sound. Remote Sensing. 2022; 14(19):4860. https://doi.org/10.3390/rs14194860
Chicago/Turabian StyleKhobotov, Alexander Gennadievich, Vera Igorevna Kalinina, Alexander Ivanovich Khil’ko, and Alexander Igorevich Malekhanov. 2022. "Novel Neuron-like Procedure of Weak Signal Detection against the Non-Stationary Noise Background with Application to Underwater Sound" Remote Sensing 14, no. 19: 4860. https://doi.org/10.3390/rs14194860
APA StyleKhobotov, A. G., Kalinina, V. I., Khil’ko, A. I., & Malekhanov, A. I. (2022). Novel Neuron-like Procedure of Weak Signal Detection against the Non-Stationary Noise Background with Application to Underwater Sound. Remote Sensing, 14(19), 4860. https://doi.org/10.3390/rs14194860