Unsupervised Change Detection around Subways Based on SAR Combined Difference Images
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Data Acquisition and Preprocessing
3. Methodology and Accuracy Estimation
3.1. Methodology
3.1.1. Single Difference Image (DI) Build Method
3.1.2. Local Energy Weight (LEW) Method
3.1.3. Fuzzy C-Means Method
3.2. Accuracy Estimation
4. Results and Analysis
4.1. Combined Difference Images of the Proposed CoDI-LEW
4.2. Other Difference Images of the CoDI-DM, CoDI-DMC, DVDI and MVDI
4.2.1. Single Difference Images of the DVDI and MVDI
4.2.2. Combined Difference Images of the CoDI-DM and CoDI-DMC
4.3. Comparisons of the Detection Results between the Proposed CoDI-LEW and Other DIs
4.4. Comparisons of the Detection Results between the FCM and Other Existing Methods
4.5. The Applicability of the Proposed SAR Detection Method
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamakloe, R.; Hong, J.; Tak, J. Determinants of transit-oriented development efficiency focusing on an integrated subway, bus and shared-bicycle system: Application of Simar-Wilson's two-stage approach. Cities 2021, 108, 102988. [Google Scholar] [CrossRef]
- Wang, H.; Feng, G.; Xu, B.; Yu, Y.; Li, Z.; Du, Y.; Zhu, J. Deriving spatio-temporal development of ground subsidence due to subway construction and operation in delta regions with PS-InSAR data: A case study in Guangzhou, China. Remote Sens. 2017, 9, 1004. [Google Scholar] [CrossRef]
- Jun, M.-J.; Choi, K.; Jeong, J.-E.; Kwon, K.-H.; Kim, H.-J. Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul. J. Transp. Geogr. 2015, 48, 30–40. [Google Scholar] [CrossRef]
- Lin, J.-J.; Gau, C. A TOD planning model to review the regulation of allowable development densities around subway stations. Land Use Policy 2006, 23, 353–360. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Leung, H.; Zhang, G. Super-Resolution Mapping Based on Spatial–Spectral Correlation for Spectral Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2256–2268. [Google Scholar] [CrossRef]
- Ye, L.; Gu, G.; He, W.; Dai, H.; Lin, J.; Chen, Q. Adaptive Target Profile Acquiring Method for Photon Counting 3-D Imaging Lidar. IEEE Photonics J. 2016, 8, 6805510. [Google Scholar] [CrossRef]
- Ahmed, O.S.; Wulder, M.A.; White, J.C.; Hermosilla, T.; Coops, N.C.; Franklin, S.E. Classification of annual non-stand replacing boreal forest change in Canada using Landsat time series: A case study in northern Ontario. Remote Sens. Lett. 2017, 8, 29–37. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Z.; Liu, F.; Wang, X.; Hu, S. Urban expansion in the megacity since 1970s: A case study in Mumbai. Geocarto Int. 2021, 36, 603–621. [Google Scholar] [CrossRef]
- Shi, L.; Leichtle, T.; Wurm, M.; Taubenböck, H. The “ghost neighborhood” phenomenon in China—geographic locations and intra-urban spatial patterns. Environ. Plan. B Urban Anal. City Sci. 2022. [Google Scholar] [CrossRef]
- Kasim, A.; Binti, J.; Yusof, M.; Shafri, H. Urban green space degradation: An experience of Kuala Lumpur City. Environ. Manag. Sustain. Dev. 2018, 8, 27. [Google Scholar] [CrossRef]
- Kwon, J.; Kim, Y.; Choi, S.-H. Airspace map design to implement customer-friendly service on unmanned aerial vehicles. Spat. Inf. Res. 2018, 27, 87–95. [Google Scholar] [CrossRef]
- Lingxin, Z.; Junkai, S.; Baijie, Z. A review of the research and application of deep learning-based computer vision in structural damage detection. Earthq. Eng. Eng. Vib. 2022, 21, 1–21. [Google Scholar] [CrossRef]
- Shukla, A.; Jain, K. Automatic extraction of urban land information from unmanned aerial vehicle (UAV) data. Earth Sci. Inform. 2020, 13, 1225–1236. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, X.; Wang, W.; Wang, L. Integration of optical and SAR remote sensing images for crop-type mapping based on a novel object-oriented feature selection method. Int. J. Agric. Biol. Eng. 2020, 13, 178–190. [Google Scholar] [CrossRef]
- Manzoni, M.; Monti-Guarnieri, A.; Molinari, M.E. High-Resolution Sar Coherent Change Detection in Urban Environment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1569–1575. [Google Scholar] [CrossRef]
- Alberga, V. Similarity Measures of Remotely Sensed Multi-Sensor Images for Change Detection Applications. Remote Sens. 2009, 1, 122–143. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Ma, J.; Gong, M.; Zhou, Z. Wavelet fusion on ratio images for change detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1122–1126. [Google Scholar] [CrossRef]
- Bergamasco, L.; Saha, S.; Bovolo, F.; Bruzzone, L. Unsupervised change-detection based on convolutional-autoencoder feature extraction. In Image and Signal Processing for Remote Sensing XXV, Proceedings of the SPIE Remote Sensing, Strasbourg, France, 9–12 September 2019; SPIE: Bellingham, WA, USA, 2019; pp. 325–332. [Google Scholar]
- Krinidis, S.; Chatzis, V. A robust fuzzy local information C-means clustering algorithm. IEEE Trans. Image Process. 2010, 19, 1328–1337. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Wei, X.; Chen, J.-W.; Jiao, L. Dynamic graph-level neural network for SAR image change detection. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Li, X.; Du, Z.; Huang, Y.; Tan, Z. A deep translation (GAN) based change detection network for optical and SAR remote sensing images. ISPRS J. Photogramm. Remote Sens. 2021, 179, 14–34. [Google Scholar] [CrossRef]
- Gong, M.; Zhao, J.; Liu, J.; Miao, Q.; Jiao, L. Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, Y.; Xu, L. Dual-channel convolutional neural network for change detection of multitemporal SAR images. In Proceedings of the 2016 International Conference on Orange Technologies (ICOT), Melbourne, Australia, 17–20 December 2016; pp. 60–63. [Google Scholar]
- Tang, J.; Cheng, J.; Xiang, D.; Hu, C. Large-Difference-Scale Target Detection Using a Revised Bhattacharyya Distance in SAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4506205. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Z.; Zhang, T.; Guo, W.; Luo, Y. Transferable SAR Image Classification Crossing Different Satellites under Open Set Condition. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4506005. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Saha, S.; Mou, L.; Zhu, X.X.; Bovolo, F.; Bruzzone, L. Semisupervised change detection using graph convolutional network. IEEE Geosci. Remote Sens. Lett. 2020, 18, 607–611. [Google Scholar] [CrossRef]
- Qi, X.; Liao, R.; Jia, J.; Fidler, S.; Urtasun, R. 3d graph neural networks for rgbd semantic segmentation. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5199–5208. [Google Scholar]
- Wanab, L.; Maab, L.; Guoad, J.; Liuac, M.; Ab, D.Y. Slow Feature Analysis Based on Convolutional Neural Network for SAR Image Change Detection. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 3805–3808. [Google Scholar]
- Muhammad, U.; Wang, W.; Chattha, S.P.; Ali, S. Pre-trained VGGNet architecture for remote-sensing image scene classification. In Proceedings of the 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 1622–1627. [Google Scholar]
- Chaib, S.; Yao, H.; Gu, Y.; Amrani, M. Deep feature extraction and combination for remote sensing image classification based on pre-trained CNN models. In Proceedings of the Ninth International Conference on Digital Image Processing (ICDIP 2017), Hong Kong, China, 19–22 May 2017. [Google Scholar]
- Ge, Y.; Jiang, S.; Xu, Q.; Jiang, C.; Ye, F. Exploiting representations from pre-trained convolutional neural networks for high-resolution remote sensing image retrieval. Multimed. Tools Appl. 2018, 77, 17489–17515. [Google Scholar] [CrossRef]
- Carincotte, C.; Derrode, S.; Bourennane, S. Unsupervised change detection on SAR images using fuzzy hidden Markov chains. IEEE Trans. Geosci. Remote Sens. 2006, 44, 432–441. [Google Scholar] [CrossRef]
- Chen, P.; Jia, Z.; Yang, J.; Kasabov, N. Unsupervised Change Detection of SAR Images Based on an Improved NSST Algorithm. J. Indian Soc. Remote Sens. 2018, 46, 801–808. [Google Scholar] [CrossRef]
- Xu, S.; Liao, Y.; Yan, X.; Zhang, G. Change detection in SAR images based on iterative Otsu. Eur. J. Remote Sens. 2020, 53, 331–339. [Google Scholar] [CrossRef]
- Dai, K.; Li, Z.; Tomás, R.; Liu, G.; Yu, B.; Wang, X.; Cheng, H.; Chen, J.; Stockamp, J. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sens. Environ. 2016, 186, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Bazi, Y.; Bruzzone, L.; Melgani, F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 874–887. [Google Scholar] [CrossRef]
- Gong, M.; Cao, Y.; Wu, Q. A Neighborhood-Based Ratio Approach for Change Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 307–311. [Google Scholar] [CrossRef]
- Mian, A.; Ginolhac, G.; Ovarlez, J.-P.; Atto, A.M. New Robust Statistics for Change Detection in Time Series of Multivariate SAR Images. IEEE Trans. Signal Process. 2019, 67, 520–534. [Google Scholar] [CrossRef]
- Ekinci, A.; Muturi, T.; Ferreira, P.M.V. Aerial Close-Range Photogrammetry to Quantify Deformations of the Pile Retaining Walls. J. Indian Soc. Remote Sens. 2021, 49, 1051–1066. [Google Scholar] [CrossRef]
- Hou, B.; Wei, Q.; Zheng, Y.; Wang, S. Unsupervised Change Detection in SAR Image Based on Gauss-Log Ratio Image Fusion and Compressed Projection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3297–3317. [Google Scholar] [CrossRef]
- Ma, W.; Li, X.; Wu, Y.; Jiao, L.; Xing, D. Data Fusion and Fuzzy Clustering on Ratio Images for Change Detection in Synthetic Aperture Radar Images. Math. Probl. Eng. 2014, 2014, 403095. [Google Scholar] [CrossRef]
- Yaoguo, Z.; Xiangrong, Z.; Biao, H.; Ganchao, L. Using Combined Difference Image and $k$ -Means Clustering for SAR Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2014, 11, 691–695. [Google Scholar] [CrossRef]
- Shi, J.; Liu, X.; Lei, Y. SAR Images Change Detection Based on Self-Adaptive Network Architecture. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1204–1208. [Google Scholar] [CrossRef]
- Shi, J.; Liu, X.; Yang, S.; Lei, Y.; Tian, D. An initialization friendly Gaussian mixture model based multi-objective clustering method for SAR images change detection. J. Ambient Intell. Humaniz. Comput. 2021. [Google Scholar] [CrossRef]
- Song, S.; Jin, K.; Zuo, B.; Yang, J. A novel change detection method combined with registration for SAR images. Remote Sens. Lett. 2019, 10, 669–678. [Google Scholar] [CrossRef]
- Zhang, K.; Fu, X.; Lv, X.; Yuan, J. Unsupervised Multitemporal Building Change Detection Framework Based on Cosegmentation Using Time-Series SAR. Remote Sens. 2021, 13, 471. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Q.; He, Y.; Peng, J.; Yang, C.; Kang, Y. Small-scale loess landslide monitoring with small baseline subsets interferometric synthetic aperture radar technique—case study of Xingyuan landslide, Shaanxi, China. J. Appl. Remote Sens. 2016, 10, 026030. [Google Scholar] [CrossRef]
- Papila, I.; Alganci, U.; Sertel, E. Sentinel-1 Based Flood Mapping Using Interferometric Coherence and Intensity Change Detection Approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1697–1703. [Google Scholar] [CrossRef]
- Malmgren-Hansen, D.; Sohnesen, T.; Fisker, P.; Baez, J. Sentinel-1 Change Detection Analysis for Cyclone Damage Assessment in Urban Environments. Remote Sens. 2020, 12, 2409. [Google Scholar] [CrossRef]
- Bauer-Marschallinger, B.; Freeman, V.; Cao, S.; Paulik, C.; Schaufler, S.; Stachl, T.; Modanesi, S.; Massari, C.; Ciabatta, L.; Brocca, L. Toward global soil moisture monitoring with Sentinel-1: Harnessing assets and overcoming obstacles. IEEE Trans. Geosci. Remote Sens. 2018, 57, 520–539. [Google Scholar] [CrossRef]
- Balenzano, A.; Satalino, G.; Lovergine, F.; Rinaldi, M.; Iacobellis, V.; Mastronardi, N.; Mattia, F. On the use of temporal series of L-and X-band SAR data for soil moisture retrieval. Capitanata plain case study. Eur. J. Remote Sens. 2013, 46, 721–737. [Google Scholar] [CrossRef]
- Balenzano, A.; Mattia, F.; Satalino, G.; Davidson, M.W. Dense temporal series of C-and L-band SAR data for soil moisture retrieval over agricultural crops. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 439–450. [Google Scholar] [CrossRef]
- Yin, Q.; Li, Y.; Huang, P.; Lin, Y.; Hong, W. Analysis of InSAR Coherence Loss Caused by Soil Moisture Variation. J. Radars 2015, 4, 689–697. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Ahmed, M.N.; Yamany, S.M.; Mohamed, N.; Farag, A.A.; Moriarty, T. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 2002, 21, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Chen, S.; Zhang, D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit. 2007, 40, 825–838. [Google Scholar] [CrossRef]
- Parker, J.K.; Hall, L.O. Accelerating Fuzzy-C Means Using an Estimated Subsample Size. IEEE Trans. Fuzzy Syst. 2014, 22, 1229–1244. [Google Scholar] [CrossRef]
- He, P.; Shi, W.; Zhang, H.; Hao, M. A novel dynamic threshold method for unsupervised change detection from remotely sensed images. Remote Sens. Lett. 2014, 5, 396–403. [Google Scholar] [CrossRef]
- Ridd, M.K.; Liu, J. A comparison of four algorithms for change detection in an urban environment. Remote Sens. Environ. 1998, 63, 95–100. [Google Scholar] [CrossRef]
DI | FP (Pixels) | OE (Pixels) | PCC (%) | K | ||||
---|---|---|---|---|---|---|---|---|
Wangfu ZHUANG | Fangte | Wangfu Zhuang | Fangte | Wangfu Zhuang | Fangte | Wangfu Zhuang | Fangte | |
DVDI | 13,053 | 5725 | 13,311 | 5760 | 91.30 | 88.31 | 0.1729 | 0.1808 |
MVDI | 40,902 | 9548 | 41,067 | 9471 | 73.81 | 80.71 | 0.0548 | 0.1140 |
CoDI-DM | 33,937 | 7745 | 34,109 | 7799 | 78.19 | 84.33 | 0.0689 | 0.1424 |
CoDI-DMC | 27,962 | 6915 | 31,300 | 6258 | 80.23 | 85.97 | 0.0723 | 0.1569 |
CoDI-LEW | 250 | 595 | 920 | 909 | 99.11 | 98.17 | 0.6274 | 0.5297 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, A.; Dai, J.; Yu, S.; Zhang, B.; Xie, Q.; Zhang, H. Unsupervised Change Detection around Subways Based on SAR Combined Difference Images. Remote Sens. 2022, 14, 4419. https://doi.org/10.3390/rs14174419
Jiang A, Dai J, Yu S, Zhang B, Xie Q, Zhang H. Unsupervised Change Detection around Subways Based on SAR Combined Difference Images. Remote Sensing. 2022; 14(17):4419. https://doi.org/10.3390/rs14174419
Chicago/Turabian StyleJiang, Aihui, Jie Dai, Sisi Yu, Baolei Zhang, Qiaoyun Xie, and Huanxue Zhang. 2022. "Unsupervised Change Detection around Subways Based on SAR Combined Difference Images" Remote Sensing 14, no. 17: 4419. https://doi.org/10.3390/rs14174419
APA StyleJiang, A., Dai, J., Yu, S., Zhang, B., Xie, Q., & Zhang, H. (2022). Unsupervised Change Detection around Subways Based on SAR Combined Difference Images. Remote Sensing, 14(17), 4419. https://doi.org/10.3390/rs14174419