Data-Free Area Detection and Evaluation for Marine Satellite Data Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Date Collection
2.2.1. GOCI, MODIS and OLCI L-1 Data
2.2.2. GOCI, MODIS and OLCI Products
2.3. Methods
2.3.1. Data Pre-Processing
2.3.2. Acquisition of Endmembers Spectral Data
- Endmember of Green Tide Algae
- 2.
- Endmember of Clouds
- 3.
- Endmember of Turbid Water, Clean Water and Sea Ice
2.3.3. Optimal Threshold Automatic Acquisition via the Improved SAM (ISAM) Algorithm
3. Results
3.1. Detection of Data-Free Area
3.2. Data Product Analysis and Evaluation
3.2.1. Integrity of Ocean Color Information
3.2.2. Continuity of Ocean Color Information
4. Discussion
4.1. Spatial and Temporal Distribution of Marine Coverage Objects Contained in Data-Free Areas
4.2. Analyses of the GOCI, MODIS and OLCI Ocean Color Product Differences
4.2.1. Cloud Detection Algorithm Variance Analysis
4.2.2. Spatial Resolution Difference Analysis
5. Conclusions
- (1)
- The integrity of the ocean colored product information is fundamentally based on the capability of the cloud detection algorithm. Most of the commonly used algorithms for cloud detection are the spectrum-oriented single-band or multi-band threshold methods. In this study, we employed an improved version of the spectrum-related SAM recognition algorithm and named it ISAM. The ISAM algorithm can reduce the fragmentation performance of the results and can increase the spatial continuity of the information. The ISAM algorithm can also reduce the fragmentation of the results, and it performs sufficiently in the recognition of marine objects. The obtained classification accuracy and Kappa coefficients are high. The ISAM algorithm is also applicable for multispectral data to a certain extent.
- (2)
- The spatial distributions of green tide algae and sea ice in the data-free areas of GOCI and MODIS are mainly manifested by the accompanying occurrence of their endmembers and the surrounding clean water. Sea ice is mostly accompanied by turbid water because of its geographical location. The shape performance of different ocean coverage objects varies, but a certain pattern can be observed over time. The number of green tide algae is higher in June and July every year, sea ice is most apparent from December to February and the missing amount in turbid waters is greater in spring and autumn. The absence of clean water shows a positive variation over time with cloud amount, mostly with the irregular spatial distribution around the accompanying clouds (above, below, left and right areas). By contrast, the missing amount of turbid water has an inverse variation over time with the cloud amount. The anomalous missing information in the data-free area of OLCI usually appears spatially as individual pixels or sporadic distribution of multiple pixels. The occurrence of accompanying phenomena is also rare, hence the minimal total amount of missing product information.
- (3)
- The experimental results (Table 5) indicate that the annual average missing rates of GOCI and MODIS are 25.81% and 27.04, respectively, which are much larger than the 10.05% of OLCI. In view of overcoming the effect of the perennial presence of clouds over the ocean, the anomalous missing rate is further used to measure the quality of product integrity. The experimental results show that the anomalous missing rates of GOCI and MODIS are 61.032% and 63.312%, respectively, which are much larger than the 1.115% of OLCI, and their anomalous missing rates are serious and similar, in general. The quality of the three products was evaluated from the perspective of integrity. The results indicate that OLCI is the superior product, followed by GOCI. Among the three products, MODIS has the worst integrity quality.
- (4)
- During the research process, we found that the data-free area has certain spatial and temporal distribution characteristics. Subsequently, we calculated the results of the spatiotemporal images of the data-free area to evaluate the product quality with respect to temporal and spatial patterns. Standard deviation and information entropy were applied to the spatiotemporal images for the quantitative evaluation of the information continuity of the ocean color products. The results (Table 7) indicate that OLCI is superior to GOCI and MODIS with respect to the spatiotemporal continuity of product information. However, as opposed to the results of the data information integrity evaluation, MODIS is superior to GOCI with respect to spatiotemporal continuity of information. In summary, OLCI is optimal with respect to both information integrity and the continuity of information.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, T.; Zhang, J.; Tang, J.; Sathyendranath, S.; Groom, S.; Ma, Y.; Zhao, W.; Song, Q. Assessment of satellite ocean color products of MERIS, MODIS and SeaWiFS along the East China Coast (in the Yellow Sea and East China Sea). ISPRS J. Photogramm. Remote Sens. 2014, 87, 137–151. [Google Scholar] [CrossRef]
- Lu, S.; He, M.; He, S.; He, S.; Pan, Y.; Yin, W.; Li, P. An Improved Cloud Masking Method for GOCI Data over Turbid Coastal Waters. Remote Sens. 2021, 13, 2722. [Google Scholar] [CrossRef]
- Borge, O.M.; Bakken, S.; Johansen, T.A. Atmospheric Correction of Hyperspectral Data Over Coastal Waters Based on Machine Learning Models. In Proceedings of the 2021 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 March 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Gilerson, A.; Malinowski, M.; Herrera, E.; Tomlinson, M.C.; Stumpf, R.P.; Ondrusek, M.E. Estimation of chlorophyll-a concentration in complex coastal waters from satellite imagery. In Proceedings of the Conference on Ocean Sensing and Monitoring XIII, Electr Network, Online, 12–16 April 2021; Volume 11752. [Google Scholar]
- Ji, T.-Y.U.; Yokoya, N.; Zhu, X.X.; Huang, T.-Z. Nonlocal Tensor Completion for Multitemporal Remotely Sensed Images’ Inpainting. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3047–3061. [Google Scholar] [CrossRef]
- Shen, H.; Li, X.; Cheng, Q.; Zeng, C.; Yang, G.; Li, H.; Zhang, L. Missing Information Reconstruction of Remote Sensing Data: A Technical Review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 61–85. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Lee, W.-J.; Park, S.-C.; Sun, J.; Lee, D.K. Retrieving Volcanic Ash Information Using COMS Satellite (MI) and Landsat-8 (OLI, TIRS) Satellite Imagery: A Case Study of Sakurajima Volcano. Korean J. Remote Sens. 2017, 33, 587–598. [Google Scholar]
- Hooker, S.B.; Mcclain, C.R. The calibration and validation of SeaWiFS data. Prog. Oceanogr. 2000, 45, 427–465. [Google Scholar] [CrossRef] [Green Version]
- Białek, A.; Vellucci, V.; Gentil, B.; Antoine, D.; Gorroño, J.; Fox, N.; Underwood, C. Monte Carlo–Based Quantification of Uncertainties in Determining Ocean Remote Sensing Reflectance from Underwater Fixed-Depth Radiometry Measurements. J. Atmos. Ocean. Technol. 2020, 37, 177–196. [Google Scholar] [CrossRef]
- Joshi, I.D.; D’Sa, E.J. Optical Properties Using Adaptive Selection of NIR/SWIR Reflectance Correction and Quasi-Analytic Algorithms for the MODIS-Aqua in Estuarine-Ocean Continuum: Application to the Northern Gulf of Mexico. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6088–6105. [Google Scholar] [CrossRef]
- Al-Naimi, N.; Raitsos, D.E.; Ben-Hamadou, R.; Soliman, Y. Evaluation of Satellite Retrievals of Chlorophyll-a in the Arabian Gulf. Remote Sens. 2017, 9, 301. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.L.; Guo, X.; Wang, L.; Sathyendranath, S.; Evers-King, H.; Chen, Y.; Li, B. Validation of MODIS ocean-colour products in the coastal waters of the Yellow Sea and East China Sea. Acta Oceanol. Sin. 2020, 39, 91–101. [Google Scholar] [CrossRef]
- Rodríguez-Esparragón, D.; Marcello, J.; Eugenio, F.; García-Pedrero, A.; Gonzalo-Martín, C. Object-based quality evaluation procedure for fused remote sensing imagery. Neurocomputing 2017, 255, 40–51. [Google Scholar] [CrossRef]
- Wang, N.N.; Gao, X.B.; Tao, D.C.; Yang, H.; Li, X.L. Facial feature point detection: A comprehensive survey. Neurocomputing 2018, 275, 50–65. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Bovik, A.C. Modern Image Quality Assessment. Synth. Lect. Image Video Multimed. Process. 2006, 2, 156. [Google Scholar] [CrossRef] [Green Version]
- Bosse, S.; Maniry, D.; Müller, K.; Wiegand, T.; Samek, W. Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment. IEEE Trans. Image Process. 2018, 27, 206–219. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, H.R.; Bovik, A.C. Image information and visual quality. IEEE Trans Image Process. 2006, 15, 430–444. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Shannon, C.E. The mathematical theory of communication. Bell Labs Tech. J. 1950, 3, 31–32. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Jiang, Z.; Zhang, J.L.; Zhang, Y.; Wu, P. Remote sensing image watermarking based on motion blur degeneration and restoration model. Optik 2021, 248, 168018. [Google Scholar] [CrossRef]
- Okarma, K. Current Trends and Advances in Image Quality Assessment. Elektron. Ir Elektrotechnika 2019, 25, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Balanov, A.; Schwartz, A.; Moshe, Y. Reduced-reference image quality assessment based on DCT Subband Similarity. In Proceedings of the 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), Lisbon, Portugal, 6–8 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, J.J.; Lin, W.S.; Shi, G.M.; Liu, A.M. Reduced-Reference Image Quality Assessment With Visual Information Fidelity. IEEE Trans. Multimed. 2013, 15, 1700–1705. [Google Scholar] [CrossRef]
- Park, J.-E.; Park, K.-A.; Lee, J.-H. Overview and Prospective of Satellite Chlorophyll-a Concentration Retrieval Algorithms Suitable for Coastal Turbid Sea Waters. J. Korean Earth Sci. Soc. 2021, 42, 247–263. [Google Scholar] [CrossRef]
- Hu, Z.; Pan, D.; He, X.; Song, D.; Huang, N.; Bai, Y.; Xu, Y.; Wang, X.; Zhang, L.; Gong, F. Assessment of the MCC method to estimate sea surface currents in highly turbid coastal waters from GOCI. Int. J. Remote Sens. 2017, 38, 572–597. [Google Scholar] [CrossRef]
- Pan, Y.; Shen, F.; Verhoef, W. An improved spectral optimization algorithm for atmospheric correction over turbid coastal waters: A case study from the Changjiang (Yangtze) estuary and the adjacent coast. Remote Sens. Environ. 2017, 191, 197–214. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.; Salama, M.H.D.S.; Zhou, Y.-X.; Li, J.-F.; Su, Z.; Kuang, D.-B. Remote-sensing reflectance characteristics of highly turbid estuarine waters—A comparative experiment of the Yangtze River and the Yellow River. Int. J. Remote Sens. 2010, 31, 2639–2654. [Google Scholar] [CrossRef]
- Zibordi, G.; Melin, F.; Berthon, J.-F. A Regional Assessment of OLCI Data Products. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1490–1494. [Google Scholar] [CrossRef]
- Wojtasiewicz, B.; Hardman-Mountford, N.J.; Antoine, D.; Dufois, F.; Slawinski, D.; Trull, T.W. Use of bio-optical profiling float data in validation of ocean colour satellite products in a remote ocean region. Remote Sens. Environ. 2018, 209, 275–290. [Google Scholar] [CrossRef]
- Li, H.; He, X.; Ding, J.; Hu, Z. Validation of the Remote Sensing Products Retrieved by Geostationary Ocean Color Imager in Liaodong Bay in Spring. Acta Opt. Sin. 2016, 36, 17–28. [Google Scholar] [CrossRef]
- Melin, F. From Validation Statistics to Uncertainty Estimates: Application to VIIRS Ocean Color Radiometric Products at European Coastal Locations. Front. Mar. Sci. 2021, 8, 790948. [Google Scholar] [CrossRef]
- Fu, L.Z.; Qu, Y.H.; Wang, J.D. Bias analysis in validation of modis lai product: A case study in cropland of Huailai, northern China. In Proceedings of the 36th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5921–5924. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.; Xie, Q. Characteristics of the Bohai Sea oil spill and its impact on the Bohai Sea ecosystem. Chin. Sci. Bull. 2012, 58, 2276–2281. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.-H.; Han, H.-J.; Cho, S.; Park, Y.-J.; Ahn, Y.-H. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS). Ocean Sci. J. 2012, 47, 223–233. [Google Scholar] [CrossRef]
- Choi, J.-K.; Park, Y.J.; Ahn, J.H.; Lim, H.-S.; Eom, J.; Ryu, J.-H. GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity. J. Geophys. Res. Ocean. 2012, 117, 9004. [Google Scholar] [CrossRef]
- Song, Q.J.; Chen, S.; Xue, C.; Lin, M.; Du, K.; Li, S.; Ma, C.; Tang, J.; Liu, J.; Zhang, T.; et al. Vicarious calibration of COCTS-HY1C at visible and near-infrared bands for ocean color application. Opt. Express 2019, 27, A1615–A1626. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. Sensor Noise Effects of the SWIR Bands on MODIS-Derived Ocean Color Products. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3280–3292. [Google Scholar] [CrossRef]
- Kappas, M.; Phan, T.N. Application of MODIS land surface temperature data: A systematic literature review and analysis. J. Appl. Remote Sens. 2018, 12, 1. [Google Scholar] [CrossRef]
- Hammond, M.L.; Henson, S.A.; Lamquin, N.; Clerc, S.; Donlon, C. Assessing the Effect of Tandem Phase Sentinel-3 OLCI Sensor Uncertainty on the Estimation of Potential Ocean Chlorophyll-a Trends. Remote Sens. 2020, 12, 2522. [Google Scholar] [CrossRef]
- Tilstone, G.H.; Pardo, S.; Dall’Olmo, G.; Brewin, R.J.W.; Nencioli, F.; Dessailly, D.; Kwiatkowska, E.; Casal, T.; Donlon, C. Performance of Ocean Colour Chlorophyll a algorithms for Sentinel-3 OLCI, MODIS-Aqua and Suomi-VIIRS in open-ocean waters of the Atlantic. Remote Sens. Environ. 2021, 260, 112444. [Google Scholar] [CrossRef]
- Zibordi, G.; Talone, M.; Voss, K.J.; Johnson, B.C. Impact of spectral resolution of in situ ocean color radiometric data in satellite matchups analyses. Opt Express 2017, 25, A798–A812. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, T. An improved cloud masking algorithm for MODIS ocean colour data processing. Remote Sens. Lett. 2015, 6, 218–227. [Google Scholar] [CrossRef]
- Meng, Q.; Mao, Z.; Huang, H.; Shen, Y. Inversion of suspended sediment concentration at the Hangzhou Bay based on the high-resolution satellite HJ-1A/B imagery. Proc. SPIE Int. Soc. Opt. Eng. 2013, 8869, 8. [Google Scholar] [CrossRef]
- Jiang, B.; Li, H.; Teng, G.; Yan, J.; Zhang, B. Using GOCI extracting information of red tide for time-series analysing in East China Sea. J. Zhejiang Univ. 2017, 44, 576–583. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A.; Green, R.O. Mapping Target Signatures via Partial Unmixing of AVIRIS Data; JPL Publication: Pasadena, CA, USA, 1995; pp. 23–26. [Google Scholar]
- Du, B.; Wei, Q.; Liu, R. An Improved Quantum-Behaved Particle Swarm Optimization for Endmember Extraction. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6003–6017. [Google Scholar] [CrossRef]
- Cui, T.-W.; Zhang, J.; Sun, L.-E.; Jia, Y.-J.; Zhao, W.; Wang, Z.-L.; Meng, J.-M. Satellite monitoring of massive green macroalgae bloom (GMB): Imaging ability comparison of multi-source data and drifting velocity estimation. Int. J. Remote Sens. 2012, 33, 5513–5527. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, J.; Xiao, J.; Fu, M.; Zhang, X.; Cui, T.; Wang, Z. The spatial and temporal distribution of floating green algae in the Subei Shoal in 2018 retrieved by Sentinel-2 images. Haiyang Xuebao 2020, 42, 12–20. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Lin, C.-H.; Tsai, P.-H.; Lai, K.-H.; Chen, J.-Y. Cloud Removal From Multitemporal Satellite Images Using Information Cloning. IEEE Trans. Geosci. Remote Sens. 2013, 51, 232–241. [Google Scholar] [CrossRef]
- Sohn, Y.; Rebello, N.S. Supervised and unsupervised spectral angle classifiers. Photogramm. Eng. Remote Sens. 2002, 68, 1271–1280. [Google Scholar] [CrossRef]
- Furukawa, F.; Morimoto, J.; Yoshimura, N.; Kaneko, M. Comparison of Conventional Change Detection Methodologies Using High-Resolution Imagery to Find Forest Damage Caused by Typhoons. Remote Sens. 2020, 12, 3242. [Google Scholar] [CrossRef]
- Baker, C.; Lawrence, R.; Montagne, C.; Patten, D.J.W. Mapping Wetlands and Riparian Areas Using Landsat ETM+ Imagery and Decision-Tree-Based Models. Wetlands 2006, 26, 465–474. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, S.; Lu, X.; Wang, Z.; Chen, C.; He, H. Classification of Urban Hyperspectral Remote Sensing Imagery Based on Optimized Spectral Angle Mapping. J. Indian Soc. Remote Sens. 2019, 47, 289–294. [Google Scholar] [CrossRef]
- Li, M.; Zhang, P. Classification of Wetland Vegetation in Hyperspectral Remote Sensing Image Based on SAM Algorithm. For. Eng. 2015, 31, 8–13. [Google Scholar] [CrossRef]
- Tian, L.; Sun, X.; Li, J.; Xing, Q.; Song, Q.; Tong, R. Sampling Uncertainties of Long-Term Remote-Sensing Suspended Sediments Monitoring over China’s Seas: Impacts of Cloud Coverage and Sediment Variations. Remote Sens. 2020, 12, 1945. [Google Scholar] [CrossRef]
- Coluzzi, R.; Imbrenda, V.; Lanfredi, M.; Simoniello, T. A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses. Remote Sens. Environ. 2018, 217, 426–443. [Google Scholar] [CrossRef]
- Leinenkugel, P.; Kuenzer, C.; Dech, S. Comparison and enhancement of MODIS cloud mask products for Southeast Asia. Int. J. Remote Sens. 2013, 34, 2730–2748. [Google Scholar] [CrossRef]
- Chen, S.; Du, K.; Lee, Z.; Liu, J.; Song, Q.; Xue, C.; Wang, D.; Lin, M.; Tang, J.; Ma, C. Performance of COCTS in Global Ocean Color Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1634–1644. [Google Scholar] [CrossRef]
- Hu, C.; Le, C. Ocean Color Continuity From VIIRS Measurements Over Tampa Bay. IEEE Geosci. Remote Sens. Lett. 2014, 11, 945–949. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Liu, S.; Li, H.; Zhou, Q.; Liu, J. Human visual system consistent quality assessment for remote sensing image fusion. ISPRS J. Photogramm. Remote Sens. 2015, 105, 79–90. [Google Scholar] [CrossRef]
- Petty, G.W. On Some Shortcomings of Shannon Entropy as a Measure of Information Content in Indirect Measurements of Continuous Variables. J. Atmos. Ocean. Technol. 2018, 35, 1011–1021. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, F.; Tao, M.; Sun, P.; Zhang, Z. Adaptive Translational Motion Compensation Method for ISAR Imaging Under Low SNR Based on Particle Swarm Optimization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5146–5157. [Google Scholar] [CrossRef]
- Govender, P.; Sivakumar, V. Investigating diffuse irradiance variation under different cloud conditions in Durban, using k-means clustering. J. Energy South. Afr. 2019, 30, 22–32. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, J.; Fan, S.; Li, Y.; Liu, X.; Liu, D. Who made the world’s largest green tide in China?-an integrated study on the initiation and early development of the green tide in Yellow Sea. Limnol. Oceanogr. 2015, 60, 1105–1117. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Huang, K.; Shao, D.; Xu, Y.; Gu, W. Monitoring the Characteristics of the Bohai Sea Ice Using High-Resolution Geostationary Ocean Color Imager (GOCI) Data. Sustainability 2019, 11, 777. [Google Scholar] [CrossRef] [Green Version]
- Miao, X.; Xie, H.; Ackley, S.F.; Perovich, D.K.; Ke, C. Object-based detection of Arctic sea ice and melt ponds using high spatial resolution aerial photographs. Cold Reg. Sci. Technol. 2015, 119, 211–222. [Google Scholar] [CrossRef]
- Ouyang, L.; Hui, F.; Zhu, L.; Cheng, X.; Zeng, T. The spatiotemporal patterns of sea ice in the Bohai Sea during the winter seasons of 2000–2016. Int. J. Digit. Earth 2017, 12, 893–909. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Park, Y.-J.; Ryu, J.-H.; Lee, B.; Oh, I.S. Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI). Ocean Sci. J. 2012, 47, 247–259. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M.J.A.O. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef]
- Banks, A.C.; Mélin, F. An assessment of cloud masking schemes for satellite ocean colour data of marine optical extremes. Int. J. Remote Sens. 2015, 36, 797–821. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Van-Anh, V.; Hoang-Phi, P.; Nguyen-Kim, T.; Lam-Dao, N.; Vu, T.T. The influence of satellite image spatial resolution on mapping land use/land cover: A case study of Ho Chi Minh City, Vietnam. IOP Conf. Ser. Earth Environ. Sci. 2021, 652, 012002. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Gao, J.; Yang, L.; Yang, F.; Wang, X. Relationship between accuracy of winter wheat area remote sensing identification and spatial resolution. Trans. Chin. Soc. Agric. Eng. 2016, 32, 152–160. [Google Scholar] [CrossRef]
Data | Satellite | Band Number | Spectrum | Spatial Resolution (m) | Temporal Resolution (Day) |
---|---|---|---|---|---|
GOCI | COMS | 8 | 0.412–0.865 | 500 | 0.05 |
MODIS | Terra/Aqua | 36 (1,2/3–7/8–36) | 0.412–14.38 | 250/500/1000 | 1 |
OLCI | Sentinel 3 | 21 | 0.4–1.02 | 300 | <2 |
Data | Level 1 | Level 2 |
---|---|---|
GOCI | COMS_GOCI_L1B | COMS_GOCI_L2A |
MODIS | MOD02KM | L2_LAC_OC |
OLCI | OL_1_EFR | OL_2_WFR |
Radians (R) | GOCI | MODIS | OLCI |
---|---|---|---|
Open Sea | 0.235 | 0.325 | 0.260 |
Turbid Water | 0.175 | 0.240 | 0.265 |
Green Tide | 0.360 | 0.295 | 0.320 |
Sea Ice | 0.125 | 0.155 | 0.110 |
Cloud | 0.585 | 0.630 | 0.525 |
Sensors | Producer Accuracy (%) | User Accuracy (%) | Kappa Coefficient | Overall Accuracy (%) |
---|---|---|---|---|
GOCI | 84.8 | 94.6 | 0.90 | 91.9 |
MODIS | 92.4 | 90.7 | 0.86 | 89.3 |
OLCI | 80.4 | 91.4 | 0.89 | 95.7 |
Miss Rate (%) | GOCI | MODIS | OLCI |
---|---|---|---|
Jan. | 43.63 | 39.23 | 13.24 |
Mar. | 11.50 | 18.23 | 0.11 |
Apr. | 28.05 | 38.79 | 6.72 |
May. | 19.38 | 22.42 | 4.56 |
Jun. | 32.13 | 34.79 | 16.20 |
Jul. | 41.36 | 53.99 | 27.66 |
Aug. | 18.15 | 15.58 | 6.36 |
Sept. | 29.20 | 26.61 | 9.87 |
Oct. | 21.81 | 23.55 | 6.21 |
Nov. | 15.64 | 11.38 | 14.89 |
Dec. | 23.10 | 12.90 | 4.75 |
AVG | 25.81 | 27.04 | 10.05 |
Class | GOCI | MODIS | OLCI | ||||||
---|---|---|---|---|---|---|---|---|---|
Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | ||||
Open Sea | 709,861 | 47.077 | 77.135 | 663,926 | 48.422 | 76.481 | 1683.18 | 0.302 | 27.044 |
Turbid Water | 203,982 | 13.528 | 22.165 | 199,284 | 14.534 | 22.956 | 2536.92 | 0.455 | 40.762 |
Green Tide | 3030.25 | 0.201 | 0.329 | 2676 | 0.195 | 0.308 | 599.85 | 0.108 | 9.638 |
Sea Ice | 3413 | 0.226 | 0.371 | 2210 | 0.161 | 0.255 | 1403.82 | 0.252 | 22.556 |
Cloud | 587,599.75 | 38.968 | 503,038 | 36.688 | 551,769.03 | 98.885 | |||
Abnormal Missing | 920,286.25 | 61.032 | 868,096 | 63.312 | 6223.77 | 1.115 | |||
Total | 1,507,886 | 100 | 1,371,134 | 100 | 557,992.8 | 100 |
Factor | GOCI | MODIS | OLCI |
---|---|---|---|
Standard Deviation (%) | 3.15 | 3.05 | 2.12 |
Information Entropy (bit) | 15.51 | 13.93 | 10.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhu, H.; Li, J.; Yang, Y.; Liu, H. Data-Free Area Detection and Evaluation for Marine Satellite Data Products. Remote Sens. 2022, 14, 3815. https://doi.org/10.3390/rs14153815
Zhang S, Zhu H, Li J, Yang Y, Liu H. Data-Free Area Detection and Evaluation for Marine Satellite Data Products. Remote Sensing. 2022; 14(15):3815. https://doi.org/10.3390/rs14153815
Chicago/Turabian StyleZhang, Shengjia, Hongchun Zhu, Jie Li, Yanrui Yang, and Haiying Liu. 2022. "Data-Free Area Detection and Evaluation for Marine Satellite Data Products" Remote Sensing 14, no. 15: 3815. https://doi.org/10.3390/rs14153815
APA StyleZhang, S., Zhu, H., Li, J., Yang, Y., & Liu, H. (2022). Data-Free Area Detection and Evaluation for Marine Satellite Data Products. Remote Sensing, 14(15), 3815. https://doi.org/10.3390/rs14153815