Deep Temporal Iterative Clustering for Satellite Image Time Series Land Cover Analysis
Abstract
:1. Introduction
- We propose a novel unsupervised cluster training framework to cluster the unlabeled SITS data for land cover analysis. The method assigns pseudo-labels to samples to train the feature extractor network, then clusters the generated deep features to get new pseudo-labels. The iteratively pseudo-supervised training improves the ability of the feature extraction network;
- An approach for dealing with large-scale SITS datasets is demonstrated, which handles millions of SITS samples for K-means clustering without the use of pre-trained tasks and prior knowledge;
- The proposed method is portable, and various feature extractor networks and clustering algorithms can be integrated for different SITS clustering tasks. Extensive experiments verify the superiority of our method compared to the state-of-the-art K-means clustering algorithms, particularly on a large-scale dataset.
2. Materials and Methods
2.1. Study Area
2.1.1. Reunion Island Dataset
2.1.2. Imperial Dataset
2.2. Deep Temporal Iterative Clustering (DTIC)
Algorithm 1 DTIC |
Require: The dataset, ; The number of clusters, ; Ensure: The clustering result
|
3. Experiments and Results
3.1. Evaluation Metrics
- ACC: ACC is a popular metric for assessing clustering outcomes. It is calculated using the acquired clustering assignments and ground truth labels in the following Equation (3):
- NMI: NMI is used to assess the same information shared between two different assignments A and B, defined as:
- We use the NMI between the clustering results and the true labels to measure the clustering quality.
- We reassign the data to a new set of clusters for each epoch with no assurance of stability. Measuring the NMI between clusters at epochs t − 1 and t provides insight into the stability of our model.
- ARI: ARI is the version of the Rand Index that takes corrected-for-chance into account. A baseline is set by using the expected similarity of all pairwise comparisons between clustering assignments. Traditionally, the Permutation Model for clustering assignments was used to fix the Rand Index (the number and size of clusters within a clustering are fixed, and all random clustering assignments are generated by shuffling the elements between the fixed clusters). is the number of sample pairs needed to group a total of samples into classes. For a clustering task and cluster assignment , we define as the number of pairs that are in the same clustering in both C and P, and as the number of pairs that are in different clustering assignments in both C and P. The following Equation (5) describes the Rand Index:
3.2. Implementation Details
3.3. Results on the Reunion Island Dataset
3.4. Results on the Imperial Dataset
4. Discussions
4.1. Given the Number of Clusters
4.2. TempCNN vs. LSTM
4.3. Single-Temporal Image vs. Multi-Temporal Images
4.4. Prospects of DTIC
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Navalgund, R.R.; Jayaraman, V.; Roy, P.S. Remote sensing applications: An overview. Curr. Sci. 2007, 93, 1747–1766. [Google Scholar]
- Justice, C.O.; Townshend, J.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Feng, L.; Li, J.; Gong, W.; Zhao, X.; Chen, X.; Pang, X. Radiometric cross-calibration of Gaofen-1 WFV cameras using Landsat-8 OLI images: A solution for large view angle associated problems. Remote Sens. Environ. 2016, 174, 56–68. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Sagawa, T.; Yamashita, Y.; Okumura, T.; Yamanokuchi, T. Satellite derived bathymetry using machine learning and multi-temporal satellite images. Remote Sens. 2019, 11, 1155. [Google Scholar] [CrossRef] [Green Version]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Minh, D.T. Combining Sentinel-1 and Sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210, 35–47. [Google Scholar] [CrossRef]
- Moskolaï, W.R.; Abdou, W.; Dipanda, A. Application of deep learning architectures for satellite image time series prediction: A review. Remote Sens. 2021, 13, 4822. [Google Scholar] [CrossRef]
- Pekel, J.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series. Remote Sens. 2016, 8, 362. [Google Scholar] [CrossRef] [Green Version]
- Khiali, L.; Ndiath, M.; Alleaume, S.; Ienco, D.; Ose, K.; Teisseire, M. Detection of spatio-temporal evolutions on multi-annual satellite image time series: A clustering based approach. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 103–119. [Google Scholar] [CrossRef]
- Liu, J.; Xue, Y.; Ren, K.; Song, J.; Windmill, C.; Merritt, P. High-performance time-series quantitative retrieval from satellite images on a GPU cluster. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2810–2821. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, R.; Zullo, J.; Amaral, B.D.; Coltri, P.P.; Sousa, E.D.; Romani, L.S. Land use temporal analysis through clustering techniques on satellite image time series. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 2173–2176. [Google Scholar]
- Fränti, P.; Rezaei, M.; Zhao, Q. Centroid index: Cluster level similarity measure. Pattern Recognit. 2014, 47, 3034–3045. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Chen, L.; Chan, C.K. Clustering with multiviewpoint-based similarity measure. IEEE Trans. Knowl. Data Eng. 2011, 24, 988–1001. [Google Scholar] [CrossRef]
- Dash, M.; Liu, H. Feature selection for clustering. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Maebashi City, Japan, 9–12 December 2002; Springer: Berlin/Heidelberg, Germany, 2000; pp. 110–121. [Google Scholar]
- Krishna, K.; Murty, M.N. Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1999, 29, 433–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Tang, P.; Duan, R. Dynamic time warping under pointwise shape context. Inf. Sci. 2015, 315, 88–101. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, H.; Zheng, Z.; Chen, J.; Bu, J.; Wu, J.; Wang, X.; Zhu, W.; Ester, M. A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions. arXiv 2022, arXiv:2206.07579. [Google Scholar]
- Alturki, A.; Bchir, O.; Ismail, M.B. Joint Deep Clustering: Classification and Review. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 863–874. [Google Scholar] [CrossRef]
- Aljalbout, E.; Golkov, V.; Siddiqui, Y.; Strobel, M.; Cremers, D. Clustering with deep learning: Taxonomy and new methods. arXiv 2018, arXiv:1801.07648. [Google Scholar]
- Alqahtani, A.; Ali, M.; Xie, X.; Jones, M.W. Deep Time-Series clustering: A review. Electronics 2021, 10, 3001. [Google Scholar] [CrossRef]
- Tian, F.; Gao, B.; Cui, Q.; Chen, E.; Liu, T. Learning deep representations for graph clustering. In Proceedings of the AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; Volume 28. [Google Scholar]
- Li, F.; Qiao, H.; Zhang, B. Discriminatively boosted image clustering with fully convolutional auto-encoders. Pattern Recognit. 2018, 83, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Liu, F.; Huang, Y.; Wang, L.; Tan, T. Auto-encoder based data clustering. In Proceedings of the Iberoamerican Congress on Pattern Recognition, Havana, Cuba, 20–23 November 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 117–124. [Google Scholar]
- Alqahtani, A.; Xie, X.; Deng, J.; Jones, M.W. A deep convolutional auto-encoder with embedded clustering. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 4058–4062. [Google Scholar]
- Caron, M.; Bojanowski, P.; Joulin, A.; Douze, M. Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 132–149. [Google Scholar]
- Lafabregue, B.; Weber, J.; Gançarski, P.; Forestier, G. Deep constrained clustering applied to satellite image time series. In Proceedings of the ECML/PKDD Workshop on Machine Learning for Earth Observation Data (MACLEAN), Würzburg, Germany, 16–20 September 2019. [Google Scholar]
- Chazan, S.E.; Gannot, S.; Goldberger, J. Deep clustering based on a mixture of autoencoders. In Proceedings of the 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), Pittsburgh, PA, USA, 13–16 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Gargees, R.S.; Scott, G.J. Deep feature clustering for remote sensing imagery land cover analysis. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1386–1390. [Google Scholar] [CrossRef]
- Pelletier, C.; Webb, G.I.; Petitjean, F. Temporal convolutional neural network for the classification of satellite image time series. Remote Sens. 2019, 11, 523. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural Networks for Perception; Elsevier: Amsterdam, The Netherlands, 1992; pp. 65–93. [Google Scholar]
- Johnson, J.; Douze, M.; Jégou, H. Billion-scale similarity search with gpus. IEEE Trans. Big Data 2019, 7, 535–547. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Wu, M.; Schölkopf, B. A local learning approach for clustering. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2006; p. 19. [Google Scholar]
- Estévez, P.A.; Tesmer, M.; Perez, C.A.; Zurada, J.M. Normalized mutual information feature selection. IEEE Trans. Neural Netw. 2009, 20, 189–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinley, D. Properties of the hubert-arable adjusted rand index. Psychol. Methods 2004, 9, 386. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
Class ID | Class Name | Number of Samples | Percentage |
---|---|---|---|
1 | Urban and built-up | 4000 | 25.79% |
2 | Forests | 4000 | 25.79% |
3 | Sparse vegetation | 3398 | 21.90% |
4 | Rocks and bare soil | 2588 | 16.68% |
5 | Sugarcane crops | 1531 | 9.87% |
Total | 15,517 | 100.00% |
Class ID | Class Name | Number of Samples | Percentage |
---|---|---|---|
1 | Alfalfa | 558,386 | 48.66% |
2 | Grasses | 300,896 | 26.22% |
3 | Carrots | 42,334 | 3.69% |
4 | Onions and garlic | 64,796 | 5.65% |
5 | Lettuce | 88,882 | 7.75% |
6 | Citrus | 31,607 | 2.74% |
7 | Corn | 60,703 | 5.29% |
Total | 1,147,604 | 100.00% |
Algorithms | K-Means | FAISS | DTIC | |
---|---|---|---|---|
Metrics | ||||
Accuracy of Clustering | 0.590 | 0.662 | 0.776 | |
Normalized Mutual Information | 0.435 | 0.437 | 0.534 | |
Adjusted Rand Index | 0.405 | 0.416 | 0.538 |
Algorithms | K-Means | FAISS | DTIC | |
---|---|---|---|---|
Metrics | ||||
Accuracy of Clustering | 0.664 | 0.663 | 0.833 | |
Normalized Mutual Information | 0.438 | 0.438 | 0.612 | |
Adjusted Rand Index | 0.419 | 0.418 | 0.632 |
Algorithms | K-Means | FAISS | DTIC | |
---|---|---|---|---|
Metrics | ||||
Accuracy of Clustering | 0.322 | 0.322 | 0.658 | |
Normalized Mutual Information | 0.168 | 0.167 | 0.470 | |
Adjusted Rand Index | 0.096 | 0.096 | 0.494 |
Algorithms | K-Means | FAISS | DTIC | |
---|---|---|---|---|
Metrics | ||||
Accuracy of Clustering | 0.344 | 0.344 | 0.911 | |
Normalized Mutual Information | 0.198 | 0.198 | 0.775 | |
Adjusted Rand Index | 0.132 | 0.133 | 0.872 |
Initial Centers | Evaluation Metrics | FAISS | DTIC with LSTM | DTIC with TempCNN |
---|---|---|---|---|
Random initial cluster centers | ACC | 0.662 | 0.715 | 0.776 |
NMI | 0.437 | 0.503 | 0.534 | |
ARI | 0.416 | 0.498 | 0.538 | |
Averaged initial cluster centers | ACC | 0.663 | 0.821 | 0.833 |
NMI | 0.438 | 0.615 | 0.617 | |
ARI | 0.619 | 0.627 | 0.632 |
Temporal Image | Evaluation Metrics | FAISS | DTIC |
---|---|---|---|
Single-temporal image | ACC | 0.580 | 0.682 |
NMI | 0.389 | 0.449 | |
Time-series images | ACC | 0.662 | 0.776 |
NMI | 3.437 | 0.534 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Zhang, W.; Zhang, Z.; Tang, P.; Gao, S. Deep Temporal Iterative Clustering for Satellite Image Time Series Land Cover Analysis. Remote Sens. 2022, 14, 3635. https://doi.org/10.3390/rs14153635
Guo W, Zhang W, Zhang Z, Tang P, Gao S. Deep Temporal Iterative Clustering for Satellite Image Time Series Land Cover Analysis. Remote Sensing. 2022; 14(15):3635. https://doi.org/10.3390/rs14153635
Chicago/Turabian StyleGuo, Wenqi, Weixiong Zhang, Zheng Zhang, Ping Tang, and Shichen Gao. 2022. "Deep Temporal Iterative Clustering for Satellite Image Time Series Land Cover Analysis" Remote Sensing 14, no. 15: 3635. https://doi.org/10.3390/rs14153635
APA StyleGuo, W., Zhang, W., Zhang, Z., Tang, P., & Gao, S. (2022). Deep Temporal Iterative Clustering for Satellite Image Time Series Land Cover Analysis. Remote Sensing, 14(15), 3635. https://doi.org/10.3390/rs14153635