Aerial Imagery-Based Building Footprint Detection with an Integrated Deep Learning Framework: Applications for Fine Scale Wildland–Urban Interface Mapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Deep Learning Model Architecture
2.3. Model Implementation
2.3.1. Data Preparation
2.3.2. Model Configurations
2.4. Model Evaluation
2.5. WUI Mapping
3. Results
3.1. Model Performance
3.2. Building Footprint Mapping and Patterns
3.3. WUI Mapping—Spatial Patterns and Temporal Dynamics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glickman, D.; Babbitt, B. Urban wildland interface communities within the vicinity of federal lands that are at high risk from wildfire. Fed. Regist. 2001, 66, 751–777. [Google Scholar]
- Manzello, S.L.; Almand, K.; Guillaume, E.; Vallerent, S.; Hameury, S.; Hakkarainen, T. FORUM Position Paper1 The Growing Global Wildland Urban Interface (WUI) Fire Dilemma: Priority Needs for Research. Fire Saf. J. 2018, 100. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I.; Fried, J.S.; Holcomb, S.S.; McKeefry, J.F. The wildland–urban interface in the united states. Ecol. Appl. 2005, 15, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Godoy, M.M.; Martinuzzi, S.; Kramer, H.A.; Defossé, G.E.; Argañaraz, J.; Radeloff, V.C. Rapid WUI growth in a natural amenity-rich region in central-western Patagonia, Argentina. Int. J. Wildland Fire 2019, 28, 473. [Google Scholar] [CrossRef]
- Johnson, K.; Nucci, A.; Long, L. Population trends in metropolitan and nonmetropolitan America: Selective deconcentration and the rural rebound. Popul. Res. Policy Rev. 2005, 24, 527–542. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Stewart, S.I.; Helmers, D.P.; Mockrin, M.H.; Hammer, R.B.; Radeloff, V.C. The 2010 Wildland-Urban Interface of the Conterminous United States; Research Map NRS-8; US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2018; 124p, Available online: https://www.fs.fed.us/nrs/pubs/rmap/rmap_nrs8.pdf (accessed on 15 April 2022).
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faivre, N.; Jin, Y.; Goulden, M.L.; Randerson, J.T. Controls on the spatial pattern of wildfire ignitions in Southern California. Int. J. Wildland Fire 2014, 23, 799–811. [Google Scholar] [CrossRef] [Green Version]
- Haynes, K.; Short, K.; Xanthopoulos, G.; Viegas, D.; Ribeiro, L.M.; Blanchi, R. Wildfires and WUI fire fatalities. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Manzello, S.L., Ed.; Springer: Cham, Switzerland, 2020; p. 16. [Google Scholar]
- Schulze, S.S.; Fischer, E.C.; Hamideh, S.; Mahmoud, H. Wildfire impacts on schools and hospitals following the 2018 California Camp Fire. Nat. Hazards 2020, 104, 901–925. [Google Scholar] [CrossRef]
- Bar-Massada, A.; Stewart, S.I.; Hammer, R.B.; Mockrin, M.H.; Radeloff, V.C. Using structure locations as a basis for mapping the wildland urban interface. J. Environ. Manag. 2013, 128, 540–547. [Google Scholar] [CrossRef]
- Johnston, L.M.; Flannigan, M.D. Mapping Canadian wildland fire interface areas. Int. J. Wildland Fire 2017, 27, 1–14. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Block, J.; Crawl, D.; Siu, V.; Bhatnagar, A.; Rodriguez, F.; Kwan, A.; Baru, N.; Altintas, I. Land cover classification at the wildland urban interface using high-resolution satellite imagery and deep learning. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 1632–1638. [Google Scholar] [CrossRef]
- Miranda, A.; Carrasco, J.; González, M.; Pais, C.; Lara, A.; Altamirano, A.; Weintraub, A.; Syphard, A.D. Evidence-based mapping of the wildland-urban interface to better identify human communities threatened by wildfires. Environ. Res. Lett. 2020, 15, 094069. [Google Scholar] [CrossRef]
- Stewart, S.I.; Radeloff, V.C.; Hammer, R.B.; Hawbaker, T.J. Defining the wildland–urban interface. J. For. 2007, 105, 201–207. [Google Scholar]
- U.S. Census Bureau. Available online: https://www2.census.gov/geo/tiger/TIGER2021/TRACT/ (accessed on 6 May 2022).
- Conedera, M.; Tonini, M.; Oleggini, L.; Orozco, C.V.; Leuenberger, M.; Pezzatti, G.B. Geospatial approach for defining the Wildland-Urban Interface in the Alpine environment. Comput. Environ. Urban Syst. 2015, 52, 10–20. [Google Scholar] [CrossRef]
- Zhong, Y.; Fei, F.; Liu, Y.; Zhao, B.; Jiao, H.; Zhang, L. SatCNN: Satellite image dataset classification using agile convolutional neural networks. Remote Sens. Lett. 2016, 8, 136–145. [Google Scholar] [CrossRef]
- Chen, Y.; Ming, D.; Lv, X. Superpixel based land cover classification of VHR satellite image combining multi-scale CNN and scale parameter estimation. Earth Sci. Inform. 2019, 12, 341–363. [Google Scholar] [CrossRef]
- Bischke, B.; Helber, P.; Folz, J.; Borth, D.; Dengel, A. Multi-Task Learning for Segmentation of Building Footprints with Deep Neural Networks. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1480–1484. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, K.; Bodani, P.; Sharma, S.A. Automatic building footprint extraction from very high-resolution imagery using deep learning techniques. Geocarto Int. 2020, 37, 1501–1513. [Google Scholar] [CrossRef]
- Guo, H.; Su, X.; Tang, S.; Du, B.; Zhang, L. Scale-Robust Deep-Supervision Network for Mapping Building Footprints From High-Resolution Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10091–10100. [Google Scholar] [CrossRef]
- Touzani, S.; Granderson, J. Open Data and Deep Semantic Segmentation for Automated Extraction of Building Footprints. Remote Sens. 2021, 13, 2578. [Google Scholar] [CrossRef]
- Ekim, B.; Sertel, E. A Multi-Task Deep Learning Framework for Building Footprint Segmentation. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 2500–2503. [Google Scholar]
- Liu, T.; Yang, L. A Fully Automatic Method for Rapidly Mapping Impacted Area by Natural Disaster. In Proceedings of the InIGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 6906–6909. [Google Scholar]
- Liu, T.; Yang, L.; Lunga, D. Change detection using deep learning approach with object-based image analysis. Remote Sens. Environ. 2021, 256, 112308. [Google Scholar] [CrossRef]
- Pepe, M.; Costantino, D.; Alfio, V.S.; Vozza, G.; Cartellino, E. A Novel Method Based on Deep Learning, GIS and Geomatics Software for Building a 3D City Model from VHR Satellite Stereo Imagery. ISPRS Int. J. Geo-Inf. 2021, 10, 697. [Google Scholar] [CrossRef]
- Buyukdemircioglu, M.; Kocaman, S.; Kada, M. DEEP LEARNING FOR 3D BUILDING RECONSTRUCTION: A REVIEW. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B2-2, 359–366. [Google Scholar] [CrossRef]
- Microsoft U.S. Building Footprints. 2018. Available online: https://github.com/microsoft/USBuildingFootprints (accessed on 4 October 2021).
- Hou, D.; Miao, Z.; Xing, H.; Wu, H. Two novel benchmark datasets from ArcGIS and bing world imagery for remote sensing image retrieval. Int. J. Remote Sens. 2020, 42, 240–258. [Google Scholar] [CrossRef]
- Li, S.; Dao, V.; Kumar, M.; Nguyen, P.; Banerjee, T. Mapping the wildland-urban interface in California using remote sensing data. Sci. Rep. 2022, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Vargas, D.V.; Sakurai, K. One Pixel Attack for Fooling Deep Neural Networks. IEEE Trans. Evol. Comput. 2019, 23, 828–841. [Google Scholar] [CrossRef] [Green Version]
- Dechesne, C.; Lassalle, P.; Lefèvre, S. Bayesian U-Net: Estimating Uncertainty in Semantic Segmentation of Earth Observation Images. Remote Sens. 2021, 13, 3836. [Google Scholar] [CrossRef]
- NAIP Information Sheet. 2015. Available online: https://www.fsa.usda.gov/Internet/FSA_File/naip_info_sheet_2015.pdf (accessed on 10 November 2021).
- Cleve, C.; Kelly, M.; Kearns, F.R.; Moritz, M. Classification of the wildland–urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Comput. Environ. Urban Syst. 2008, 32, 317–326. [Google Scholar] [CrossRef]
- Xie, Y.; Cai, J.; Bhojwani, R.; Shekhar, S.; Knight, J. A locally-constrained YOLO framework for detecting small and densely-distributed building footprints. Int. J. Geogr. Inf. Sci. 2020, 34, 777–801. [Google Scholar] [CrossRef]
- Yang, H.L.; Yuan, J.; Lunga, D.; Laverdiere, M.; Rose, A.; Bhaduri, B. Building Extraction at Scale Using Convolutional Neural Network: Mapping of the United States. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2600–2614. [Google Scholar] [CrossRef] [Green Version]
- Kusz, M.; Peters, J.; Huber, L.; Davis, J.; Michael, S. Building Detection with Deep Learning. In Proceedings of the Practice and Experience in Advanced Research Computing, Portland, OR, USA, 17 July 2021; pp. 1–8. [Google Scholar]
- Yu, K.; Frank, H.; Wilson, D. Points 2 Polygons: Context-Based Segmentation from Weak Labels Using Adversarial Networks. arXiv 2021, arXiv:2106.02804. [Google Scholar]
- Theobald, D.M.; Romme, W.H. Expansion of the US wildland–urban interface. Landsc. Urban Plan. 2007, 83, 340–354. [Google Scholar] [CrossRef]
- Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Radeloff, V.C. High wildfire damage in interface communities in California. Int. J. Wildland Fire 2019, 28, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Napa County Building Footprints. Available online: http://gis.napa.ca.gov/giscatalog/catalog_xml.asp (accessed on 15 April 2022).
- Shasta County Building Footprints. Available online: https://data-shasta.opendata.arcgis.com/datasets/Shasta:buildingfootprints/about (accessed on 15 April 2022).
- San Luis Obispo County Building Footprints. Available online: https://opendata.slocounty.ca.gov/datasets/building-footprints/explore (accessed on 15 April 2022).
- Chen, D.-Y.; Peng, L.; Li, W.-C.; Wang, Y.-D. Building Extraction and Number Statistics in WUI Areas Based on UNet Structure and Ensemble Learning. Remote Sens. 2021, 13, 1172. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Wang, Z.; Wang, Z.J.; Ward, R.K.; Wang, X. Deep learning for pixel-level image fusion: Recent advances and future prospects. Inf. Fusion 2018, 42, 158–173. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Jing, J.; Wang, Z.; Rätsch, M.; Zhang, H. Mobile-Unet: An efficient convolutional neural network for fabric defect detection. Text. Res. J. 2022, 92, 30–42. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, L.; Xie, Z.; Chen, Z. Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters. Remote Sens. 2018, 10, 144. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical image computing and computer-assisted intervention, Cham, Switzerland, 5 October 2015; pp. 234–241. [Google Scholar]
- Wagner, F.H.; Sanchez, A.; Tarabalka, Y.; Lotte, R.G.; Ferreira, M.P.; Aidar, M.P.; Gloor, E.; Phillips, O.L.; Aragao, L.E. Using the U-net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images. Remote Sens. Ecol. Conserv. 2019, 5, 360–375. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Li, X.; Ye, Y.; Lau, R.Y.K.; Zhang, X.; Huang, X. Road Detection and Centerline Extraction Via Deep Recurrent Convolutional Neural Network U-Net. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7209–7220. [Google Scholar] [CrossRef]
- Ivanovsky, L.; Khryashchev, V.; Pavlov, V.; Ostrovskaya, A. Building detection on aerial images using U-NET neural networks. In Proceedings of the 2019 24th Conference of Open Innovations Association (FRUCT), Moscow, Russia, 8 April 2019; pp. 116–122. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Processing Syst. 2014, 27, 2672–2680. [Google Scholar]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative Adversarial Networks: An Overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, J. Conditional generative adversarial nets for convolutional face generation. Winter Semester 2014, 2014, 2. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Li, C.; Wand, M. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 702–716. [Google Scholar] [CrossRef] [Green Version]
- Demir, U.; Unal, G. Patch-based image inpainting with generative adversarial networks. arXiv 2018, arXiv:1803.07422. [Google Scholar]
- Gorgel, P.; Sertbas, A.; Ucan, O.N. A Wavelet-Based Mammographic Image Denoising and Enhancement with Homomorphic Filtering. J. Med. Syst. 2009, 34, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Bayer, T. Automated Building Simplification Using a Recursive Approach. In Cartography in Central and Eastern Europe; Springer: Berlin/Heidelberg, Germany, 2009; pp. 121–146. [Google Scholar] [CrossRef] [Green Version]
- Yekeen, S.T.; Balogun, A.-L.; Yusof, K.B.W. A novel deep learning instance segmentation model for automated marine oil spill detection. ISPRS J. Photogramm. Remote Sens. 2020, 167, 190–200. [Google Scholar] [CrossRef]
- Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Proceedings of the European Conference on Information Retrieval, Santiago de Compostela, Spain, 21 March 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 345–359. [Google Scholar]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar]
- Haunert, J.H.; Wolff, A. Optimal and topologically safe simplification of building footprints. In Proceedings of the 18th Sigspatial International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2 November 2010; pp. 192–201. [Google Scholar]
- Guercke, R.; Sester, M. Building footprint simplification based on hough transform and least squares adjustment. In Proceedings of the 14th Workshop of the ICA commission on Generalisation and Multiple Representation, Paris, France, 1 July 2011; Volume 30. [Google Scholar]
- Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; Wickham, J.; Stehman, S.; et al. Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS J. Photogramm. Remote Sens. 2020, 162, 184–199. [Google Scholar] [CrossRef]
- Multi-Resolution Land Characteristics Consortium Data. Available online: https://www.mrlc.gov/data (accessed on 6 May 2022).
- Mockrin, M.H.; Stewart, S.I.; Radeloff, V.C.; Hammer, R.B.; Alexandre, P.M. Adapting to Wildfire: Rebuilding After Home Loss. Soc. Nat. Resour. 2015, 28, 839–856. [Google Scholar] [CrossRef]
- Kramer, H.A.; Butsic, V.; Mockrin, M.H.; Ramirez-Reyes, C.; Alexandre, P.M.; Radeloff, V.C. Post-wildfire rebuilding and new development in California indicates minimal adaptation to fire risk. Land Use Policy 2021, 107, 105502. [Google Scholar] [CrossRef]
- Hui, I.; Zhao, A.; Cain, B.E.; Driscoll, A.M. Baptism by Wildfire? Wildfire Experiences and Public Support for Wildfire Adaptation Policies. Am. Politics Res. 2022, 50, 108–116. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27 June–30 June 2016; pp. 770–778. [Google Scholar]
- Ueki, W.; Nishii, T.; Umehara, K.; Ota, J.; Higuchi, S.; Ohta, Y.; Nagai, Y.; Murakawa, K.; Ishida, T.; Fukuda, T. Generative adversarial network-based post-processed image super-resolution technology for accelerating brain MRI: Comparison with compressed sensing. Acta Radiol. 2022. [Google Scholar] [CrossRef]
- Khalel, A.; El-Saban, M. Automatic pixelwise object labeling for aerial imagery using stacked u-nets. arXiv 2018, arXiv:1803.04953. [Google Scholar]
- Van Hoorick, B. Image outpainting and harmonization using generative adversarial networks. arXiv 2019, arXiv:1912.10960. [Google Scholar]
- Zhu, X.; Zhang, X.; Zhang, X.-Y.; Xue, Z.; Wang, L. A novel framework for semantic segmentation with generative adversarial network. J. Vis. Commun. Image Represent. 2019, 58, 532–543. [Google Scholar] [CrossRef]
- Caggiano, M.D.; Tinkham, W.T.; Hoffman, C.; Cheng, A.; Hawbaker, T. High resolution mapping of development in the wildland-urban interface using object based image extraction. Heliyon 2016, 2, e00174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caggiano, M. Mapping Values at Risk, Assessing Building Loss and Evaluating Stakeholder Expectations of Wildfire Mitigation in the Wildland-Urban Interface. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2020. [Google Scholar]
- Yang, H.L.; Lunga, D.; Yuan, J. Toward country scale building detection with convolutional neural network using aerial images. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 870–873. [Google Scholar] [CrossRef]
- Carlson, A.R.; Helmers, D.P.; Hawbaker, T.J.; Mockrin, M.H.; Radeloff, V.C. The wildland–urban interface in the United States based on 125 million building locations. Ecol. Appl. 2022, 32, e2597. [Google Scholar] [CrossRef] [PubMed]
Accuracy | F1 | Precision | Recall | IoU | |
---|---|---|---|---|---|
Testing Dataset | |||||
Final Model | 0.97 | 0.53 | 0.52 | 0.54 | 0.52 |
Mobile-UNet Only | 0.96 | 0.41 | 0.30 | 0.66 | 0.43 |
cGAN only | 0.88 | 0.31 | 0.24 | 0.40 | 0.32 |
Evaluation Dataset | |||||
Final Model | 0.98 | 0.64 | 0.65 | 0.62 | 0.50 |
Mobile-UNet Only | 0.97 | 0.48 | 0.36 | 0.70 | 0.43 |
cGAN only | 0.93 | 0.35 | 0.49 | 0.27 | 0.34 |
Accuracy | % Building Area | ||||||
---|---|---|---|---|---|---|---|
Accuracy | F1 | Precision | Recall | IoU | This Study | Ground Truth | |
Overall | |||||||
Urban | 0.93 | 0.61 | 0.58 | 0.65 | 0.53 | 7.26% | 8.83% |
Interface WUI | 0.95 | 0.62 | 0.62 | 0.62 | 0.52 | 5.12% | 6.15% |
Intermix WUI | 0.99 | 0.67 | 0.80 | 0.58 | 0.47 | 1.39% | 1.47% |
Rural | 0.99 | 0.75 | 0.89 | 0.64 | 0.43 | 0.39% | 0.40% |
Shasta County | |||||||
Urban | 0.95 | 0.61 | 0.69 | 0.55 | 0.51 | 5.14% | 6.13% |
Interface WUI | 0.97 | 0.62 | 0.69 | 0.56 | 0.51 | 3.54% | 4.61% |
Intermix WUI | 0.99 | 0.68 | 0.84 | 0.58 | 0.48 | 1.18% | 1.25% |
Rural | 0.99 | 0.76 | 0.91 | 0.66 | 0.44 | 0.43% | 0.42% |
Napa County | |||||||
Urban | 0.88 | 0.58 | 0.56 | 0.61 | 0.50 | 9.21% | 11.82% |
Interface WUI | 0.93 | 0.56 | 0.57 | 0.55 | 0.47 | 7.39% | 7.35% |
Intermix WUI | 0.98 | 0.60 | 0.71 | 0.52 | 0.44 | 2.10% | 2.07% |
Rural | 0.99 | 0.66 | 0.86 | 0.54 | 0.36 | 0.36% | 0.41% |
San Luis Obispo County | |||||||
Urban | 0.93 | 0.62 | 0.55 | 0.70 | 0.54 | 7.91% | 9.62% |
Interface WUI | 0.95 | 0.64 | 0.57 | 0.72 | 0.53 | 6.75% | 8.09% |
Intermix WUI | 0.99 | 0.70 | 0.78 | 0.64 | 0.48 | 1.41% | 1.60% |
Rural | 0.99 | 0.76 | 0.86 | 0.68 | 0.47 | 0.31% | 0.33% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Jin, Y. Aerial Imagery-Based Building Footprint Detection with an Integrated Deep Learning Framework: Applications for Fine Scale Wildland–Urban Interface Mapping. Remote Sens. 2022, 14, 3622. https://doi.org/10.3390/rs14153622
Huang Y, Jin Y. Aerial Imagery-Based Building Footprint Detection with an Integrated Deep Learning Framework: Applications for Fine Scale Wildland–Urban Interface Mapping. Remote Sensing. 2022; 14(15):3622. https://doi.org/10.3390/rs14153622
Chicago/Turabian StyleHuang, Yuhan, and Yufang Jin. 2022. "Aerial Imagery-Based Building Footprint Detection with an Integrated Deep Learning Framework: Applications for Fine Scale Wildland–Urban Interface Mapping" Remote Sensing 14, no. 15: 3622. https://doi.org/10.3390/rs14153622
APA StyleHuang, Y., & Jin, Y. (2022). Aerial Imagery-Based Building Footprint Detection with an Integrated Deep Learning Framework: Applications for Fine Scale Wildland–Urban Interface Mapping. Remote Sensing, 14(15), 3622. https://doi.org/10.3390/rs14153622