A Hybrid-Order Spectral-Spatial Feature Network for Hyperspectral Image Classification
Abstract
:1. Introduction
- We design a symmetrical feature extraction block to capture spectral-spatial features from different scales and layers, while maximizing the use of HSI feature flows between different scales.
- To dispel redundant information and noise, a distillation block is devised, which can focus on adaptively recalibratin channel-wise and spatial-wise feature responses to achieve first-order spectral-spatial feature distillation.
- We build a feature rethinking module to model more discriminative second-order spectral-spatial features, which further refines the first-order features by capturing the importance of feature cross-dimension and improving the classification performance by exploiting the second-order statistics of HSI, thereby improving the classification performance.
2. Method
2.1. Precedent Feature Extraction Module
2.1.1. Symmetrical Feature Extraction Block
Symmetrical Multiscale Dense Link Unit
Cross Transmission
Local Skip Transmission
2.1.2. Distillation Block
Feature Splitting
Channel-Wise Recalibrate Branch
Spatial-Wise Recalibrate Branch
2.2. Feature Rethinking Module
2.2.1. Feature Cross-Dimension Interaction
Cascaded Pooling
Triplet Cross-Dimension Stream
2.2.2. Second-Order Pooling
3. Experiments and Discussion
3.1. Experiment Setup
3.1.1. Datasets
3.1.2. Implementation Details
3.2. Framework Parameter Settings
3.2.1. Influence of Different Spatial Sizes
3.2.2. Influence of Diverse Training Percentage
3.2.3. Influence of Different Numbers of Principal Components
3.2.4. Influence of Diverse Compressed Ratios in the DB
3.2.5. Influence of Various Numbers of SFEBs
3.3. Comparisons with the State-of-the-Art Method
- (1)
- From Table 5, Table 6, Table 7 and Table 8, we can observe that, in comparison with three classification methods using ML, ten classification methods based on DL almost achieve superior classification results on four experimental datasets. Among them, our proposed HS2FNet occupies the first place. This is because ML-based methods all depend on hand-crafted features and prior knowledge, resulting in poor generalization performance, and cannot be well adapted to the classification task. By comparison, the DL-based classification methods can automatically extract hierarchical representations from HSI data. In addition, among ten DL-based classification methods, we also find that the classification accuracy of 1D_CNN is not satisfactory. This is because 1D_CNN only captures features in the spectral domain and ignores the rich spatial information of HSI.
- (2)
- The MFDN, SSAN, DCRN and MAFN adopt two CNN architectures to capture spectral features and spatial features, respectively. The simple concatenated operation or element-wise summation is utilized to fuse spectral and spatial features for classification. These methods obtain good classification results, but the close interdependency of spectral and spatial information is not excavated. Compared with them, our proposed method obtains the better classification accuracy on four datasets. For example, three evaluation indexes of our proposed HS2FNet are 99.98%, 99.97% and 99.98% on SA dataset, respectively, which are 3.14%, 3.07% and 3.48% higher than those of DCRN, and 0.47%, 0.49% and 0.53% higher than those of MFDN, respectively. Our proposed method uses the PFEM to capture multiscale spectral-spatial features while eliminating redundancy information, while the FRM is designed to mine second-order spectral-spatial statistic features to improve the classification performance.
- (3)
- The attention mechanism can capture key areas from images for classification. The SSAN introduces the self-attention mechanism, using the relationship between the pixels within an HSI cube to obtain attention areas. The JSSAN designs a spectral-spatial attention block to capture the long-range correlation of the spectral-spatial information. To eliminate redundant bands and interfering pixels, the MAFN constructs a band attention module and a spatial attention module. Although these attention mechanism-based classification methods can obtain evaluation indicators, they ignore the cross-dimension interaction. Comparec with these methods, our proposed method achieves the superior classification results on four datasets. For example, the designed model achieves 100% OA, 100% AA and 100% Kappa on KSC datasets, which are 0.58%, 0.88% and 0.64% higher than those of SSAN, 3.05%, 4.70% and 3.40% than those of JSSAN, and 3.31%, 5.01% and 3.69% than those of MAFN, respectively. Our designed DB not only pays more attention to adaptively recalibrating feature response to eliminate redundant features, but also learns close correlation of spatial and spectral data. Meanwhile, we utilize FCI, which heightens the representative ability of HSI by introducing cross-dimensional interaction without dimensionality reduction.
- (4)
- Figure 10, Figure 11, Figure 12 and Figure 13 illustrate the visual maps of 13 methods on UP dataset, KSC dataset, IP dataset and SA dataset, respectively. The visual results in these figures are consistent with the numerical values listed in Table 5, Table 6, Table 7 and Table 8. Compared with the ground-truth image, we can draw the conclusion that our proposed HS2FNet has smoother classification maps and higher classification accuracy. Meanwhile, it can make a better balance between the boundary information and the object continuity.
3.4. Generalization Performance
3.5. Ablation Studies
3.5.1. Effectiveness Analysis of the SFEB
3.5.2. Effectiveness Analysis of the DB
3.5.3. Effectiveness Analysis of the Proposed HS2FNet
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Process. Mag. 2002, 19, 17–28. [Google Scholar] [CrossRef]
- Hang, D.; Yokoya, N.; Chanussot, J.; Zhu, X. CoSpace: Common subspace learning from hyperspectral-multispectral correspondences. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4349–4359. [Google Scholar] [CrossRef] [Green Version]
- Naoto, Y.; Jonathan, C.; Karl, S. Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images. Remote Sens. 2016, 8, 172. [Google Scholar]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, L.; Tao, D.; Huang, X.; Du, B. Hyperspectral remote sensing image subpixel target detection based on supervised metric learning. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4955–4965. [Google Scholar] [CrossRef]
- Ghamisi, P.; Mura, M.D.; Benediktsson, J.A. A survey on spectral spatial classification techniques based on attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2335–2355. [Google Scholar] [CrossRef]
- Sun, B.; Kang, X.; Li, S.; Benediktsson, J.A. Random-Walker-based collaborative learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 212–222. [Google Scholar] [CrossRef]
- Wang, Z.; Du, B.; Shi, Q.; Tu, W. Domain adaptation with discriminative distribution and manifold embedding for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1155–1159. [Google Scholar] [CrossRef]
- Gong, Z.; Zhong, P.; Yu, Y.; Hu, W.; Li, S. A CNN with multiscale convolution and diversified metric for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3599–3618. [Google Scholar] [CrossRef]
- Safari, K.; Prasad, S.; Labate, D. A Multiscale Deep Learning Approach for High-Resolution Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2021, 18, 167–171. [Google Scholar] [CrossRef]
- Gan, Y.; Luo, F.; Liu, J.; Lei, B.; Zhang, T.; Liu, K. Feature Extraction Based Multi-Structure Manifold Embedding for Hyperspectral Remote Sensing Image Classification. IEEE Access 2017, 5, 25069–25080. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, C.; Wang, H.; Li, J. Learn multiple-kernel SVMs domain adaptation in hyperspectral data. IEEE Geosci. Remote Sens. 2013, 10, 1224–1228. [Google Scholar]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 809–823. [Google Scholar] [CrossRef]
- Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Lin, J.; Wang, Q. Hyperspectral Image Classification via Multitask Joint Sparse Representation and Stepwise MRF Optimization. IEEE Trans. Cybern. 2016, 46, 2966–2977. [Google Scholar] [CrossRef] [PubMed]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Jia, X.; Zhang, B. Superpixel-based Markov random field for classification of hyperspectral images. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 3491–3494. [Google Scholar]
- Shen, L.; Jia, S. Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5039–5046. [Google Scholar] [CrossRef]
- Li, W.; Chen, C.; Su, H.; Du, Q. Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693. [Google Scholar] [CrossRef]
- Lu, T.; Li, S.; Fang, L.; Jia, X.; Benediktsson, J.A. From subpixel to superpixel: A novel fusion framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4398–4411. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1351–1362. [Google Scholar] [CrossRef]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Classification for hyperspectral imagery based on sparse representation. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Reykjavik, Iceland, 14–16 June 2010; pp. 1–4. [Google Scholar]
- He, L.; Li, J.; Liu, C.; Li, S. Recent advances on spectral-spatial hyperspectral image classification: An overview and new guidelines. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1579–1597. [Google Scholar] [CrossRef]
- Paul, A.; Chaki, N. Band selection using spectral and spatial information in particle swarm optimization for hyperspectral image classification. Soft Comput. 2022, 26, 2819–2834. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–Spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Schölkopf, B.; Platt, J.; Hofmann, T. Greedy layer-wise training of deep networks. Int. Conf. Neural Inf. Process. Syst. 2017, 19, 153–160. [Google Scholar]
- Mou, L.; Ghamisi, P.; Zhu, X. Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, K.; Miyake, S.; Ito, T. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. IEEE Trans. Syst. 1970, 13, 826–834. [Google Scholar]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sensors 2015, 2015, 258619. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhu, X.; Liu, Y.; Bao, J. Adaptive spatial-spectral feature learning for hyperspectral image classification. IEEE Access 2019, 7, 61534–61547. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Chan, J.C. Learning and Transferring Deep Joint Spectral–Spatial Features for Hyperspectral Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4729–4742. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; Gao, D.; Shi, G. S3Net: Spectral–Spatial–Semantic Network for Hyperspectral Image Classification With the Multiway Attention Mechanism. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5505317. [Google Scholar] [CrossRef]
- Li, Z.; Wang, T.; Li, W.; Du, Q.; Wang, C.; Liu, C.; Shi, X. Deep Multi-layer Fusion Dense Network for Hyperspectral Image Classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2020, 13, 1258–1270. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Meng, Z.; Jiao, L.; Liang, M.; Zhao, F. Hyperspectral Image Classification With Mixed Link Networks. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2021, 14, 2494–2507. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep&dense convolutional neural network for hyperspectral image classification. Remote Sens. 2018, 10, 1454. [Google Scholar]
- Li, H.; Wang, W.; Pan, L.; Li, W.; Du, Q.; Tao, R. Robust capsule network based on maximum correntropy criterion for hyperspectral image classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2020, 13, 738–751. [Google Scholar] [CrossRef]
- Mei, Z.; Yin, Z.; Kong, X.; Wang, L.; Ren, H. Cascade Residual Capsule Network for Hyperspectral Image Classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2022, 15, 3089–3106. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, H.; Liu, Y.; Zheng, K.; Xu, Z.; Xiao, C. Dual-Channel Convolution Network With Image-Based Global Learning Framework for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6005705. [Google Scholar] [CrossRef]
- Bo, X.; Li, J.; Li, Y.; Song, R.; Xi, Y.; Shi, Y.; Qin, D. Multi-Direction Networks With Attentional Spectral Prior for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5500915. [Google Scholar]
- Feng, J.; Feng, X.; Chen, J.; Cao, X.; Zhang, X.; Jiao, L.; Yu, T. Generative Adversarial Networks Based on Collaborative Learning and Attention Mechanism for Hyperspectral Image Classification. Remote Sens. 2020, 12, 1149. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Zheng, X.; Lu, X.; Wu, S. Spectral–Spatial Attention Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3232–3245. [Google Scholar] [CrossRef]
- Gu, J.; Jiao, L.; Liu, F.; Yang, S.; Wang, R.; Chen, P.; Cui, Y.; Xie, J.; Zhang, Y. Random subspace based ensemble sparse representation. Pattern Recognit. 2018, 74, 544–555. [Google Scholar] [CrossRef]
- Xiang, J.; Wei, C.; Wang, M.; Teng, L. End-to-End Multilevel Hybrid Attention Framework for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5511305. [Google Scholar] [CrossRef]
- Zhang, X.; Shang, S.; Tang, S.; Feng, J.; Jiao, L. Spectral Partitioning Residual Network With Spatial Attention Mechanism for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5507714. [Google Scholar] [CrossRef]
- Ge, Z.; Cao, G.; Zhang, Y.; Li, X.; Shi, H.; Fu, P. Adaptive Hash Attention and Lower Triangular Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5509119. [Google Scholar] [CrossRef]
- Wang, X.; Tan, K.; Du, P.; Pan, C.; Ding, J. A Unified Multiscale Learning Framework for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4508319. [Google Scholar] [CrossRef]
- Yang, K.; Sun, H.; Zou, C.; Lu, X. Cross-Attention Spectral–Spatial Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5518714. [Google Scholar] [CrossRef]
- Lin, T.-Y.; RoyChowdhury, A.; Maji, S. Bilinear CNN models for fine-grained visual recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1449–1457. [Google Scholar]
- Li, Y.; Wang, N.; Liu, J.; Hou, X. Factorized bilinear models for image recognition. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2098–2106. [Google Scholar]
- Wang, Y.; Xie, L.; Liu, C.; Qiao, S.; Zhang, Y.; Zhang, W.; Tian, Q.; Yuille, A. SORT: Second-order response transform for visual recognition. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1368–1377. [Google Scholar]
- He, N.; Paoletti, M.E.; Haut, J.M.; Fang, L.; Li, S.; Plaza, A.; Plaza, J. Feature extraction with multiscale covariance maps for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 755–769. [Google Scholar] [CrossRef]
- Zheng, J.; Feng, Y.; Bai, C.; Zhang, J. Hyperspectral image classify-cation using mixed convolutions and covariance pooling. IEEE Trans. Geosci. Remote Sens. 2020, 59, 522–534. [Google Scholar] [CrossRef]
- Gao, Z.; Xie, J.; Wang, Q.; Li, P. Global Second-order Pooling Convolutional Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3019–3028. [Google Scholar]
- Zhang, C.; Li, G.; Du, S. Multi-Scale Dense Networks for Hyperspectral Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9201–9222. [Google Scholar] [CrossRef]
- Fu, H.; Sun, G.; Ren, J.; Zhang, A.; Jia, X. Fusion of PCA and Segmented-PCA Domain Multiscale 2-D-SSA for Effective Spectral-Spatial Feature Extraction and Data Classification in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5500214. [Google Scholar] [CrossRef]
- Hao, Q.; Sun, B.; Li, S.; Crawford, M.M.; Kang, X. Curvature Filters-Based Multiscale Feature Extraction for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5507916. [Google Scholar] [CrossRef]
- Cui, Y.; Zhou, F.; Wang, J.; Liu, X.; Lin, Y.; Belongie, S. Kernel pooling for convolutional neural networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3049–3058. [Google Scholar]
- Li, P.; Xie, J.; Wang, Q.; Gao, Z. Towards faster training of global covariance pooling networks by iterative matrix square root normalization. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 947–955. [Google Scholar]
- Wang, H.; Wang, Q.; Gao, M.; Li, P.; Zuo, W. Multi-scale location-aware kernel representation for object detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1248–1257. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Huang, L.; Chen, Y. Dual-Path Siamese CNN for Hyperspectral Image Classification With Limited Training Samples. IEEE Geosci. Remote Sens. Lett. 2021, 18, 518–522. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Hamida, A.B.; Benoit, A.; Lambert, P.; Amar, C.B. 3-D Deep Learning Approach for Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4420–4434. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yin, J.; Jia, X.; Li, S.; Han, B. Joint Spatial–Spectral Attention Network for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1816–1820. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Li, W.; Du, Q.; Liu, C.; Fang, Z.; Zhai, L. Dual-Channel Residual Network for Hyperspectral Image Classification With Noisy Labels. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5507916. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X.; Xu, Y.; Li, W.; Zhai, L.; Fang, Z.; Shi, X. Hyperspectral Image Classification With Multiattention Fusion Network. IEEE Geosci. Remote Sens. Lett. 2021, 19, 5503305. [Google Scholar] [CrossRef]
No. | Color | Class | Train | Test |
---|---|---|---|---|
1 | | Asphalt | 664 | 5967 |
2 | | Meadows | 1865 | 16,784 |
3 | | Gravel | 210 | 1889 |
4 | | Trees | 307 | 2757 |
5 | | Metal sheets | 135 | 1210 |
6 | | Bare Soil | 503 | 4526 |
7 | | Bitumen | 133 | 1197 |
8 | | Bricks | 369 | 3313 |
9 | | Shadows | 95 | 852 |
Total | 4281 | 38,495 |
No. | Color | Class | Train | Test |
---|---|---|---|---|
1 | | Scrub | 153 | 608 |
2 | | Willow | 49 | 194 |
3 | | CP hammock | 52 | 204 |
4 | | Slash pine | 51 | 201 |
5 | | Oak/Broadleaf | 33 | 128 |
6 | | Hardwood | 46 | 183 |
7 | | Grass-pasture-mowed | 21 | 84 |
8 | | Graminoid marsh | 87 | 344 |
9 | | Spartina marsh | 104 | 416 |
10 | | Cattail marsh | 81 | 323 |
11 | | Salt marsh | 84 | 335 |
12 | | Mud flats | 101 | 402 |
13 | | Water | 186 | 741 |
Total | 1048 | 4163 |
No. | Color | Class | Train | Test |
---|---|---|---|---|
1 | | Alfalfa | 10 | 36 |
2 | | Corn-notill | 286 | 1142 |
3 | | Corn-mintill | 166 | 664 |
4 | | Corn | 48 | 189 |
5 | | Grass-pasture | 97 | 386 |
6 | | Grass-trees | 146 | 584 |
7 | | Grass-pasture-mowed | 6 | 22 |
8 | | Hay-windrowed | 96 | 382 |
9 | | Oats | 4 | 16 |
10 | | Soybean-notill | 195 | 777 |
11 | | Soybean-mintill | 491 | 1964 |
12 | | Soybean-clean | 119 | 474 |
13 | | Wheat | 41 | 164 |
14 | | Woods | 253 | 1012 |
15 | | Buildings-Grass-Tree | 78 | 308 |
16 | | Stone-Steel-Towers | 19 | 74 |
Total | 2055 | 8194 |
No. | Color | Class | Train | Test |
---|---|---|---|---|
1 | | Broccoli-green-weeds-1 | 201 | 2825 |
2 | | Broccoli-green-weeds-2 | 373 | 3353 |
3 | | Fallow | 198 | 1178 |
4 | | Fallow-rough-plow | 140 | 154 |
5 | | Fallow-smooth | 268 | 2410 |
6 | | Stubble-trees | 396 | 3563 |
7 | | Celery | 358 | 3221 |
8 | | Grapes-untrained | 1128 | 10,143 |
9 | | Soil-vineyard-develop | 621 | 5582 |
10 | | Corn-senseced-green-weeds | 328 | 2950 |
11 | | Lettuce-romaine-4wk | 107 | 961 |
12 | | Lettuce-romaine-5wk | 193 | 1734 |
13 | | Lettuce-romaine-6wk | 92 | 824 |
14 | | Lettuce-romaine-7wk | 107 | 963 |
15 | | Vineyard-untrained | 727 | 6541 |
16 | | Vineyard-vertical-trellis | 181 | 1626 |
Total | 5418 | 48,711 |
No. | SVM | RF | MLR | 1D_CNN | 2D_CNN | 3D_CNN | HybridSN | MFDN | SSAN | JSSAN | DCRN | MAFN | HS2FNet |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 82.51 | 61.02 | 51.83 | 91.43 | 94.54 | 92.97 | 96.99 | 95.56 | 99.40 | 99.14 | 97.74 | 99.38 | 99.80 |
2 | 6.09 | 70.21 | 69.97 | 97.60 | 99.94 | 99.31 | 99.83 | 98.15 | 99.82 | 99.80 | 99.67 | 99.04 | 99.98 |
3 | 53.39 | 0.00 | 0.00 | 96.15 | 97.89 | 92.73 | 99.79 | 100.00 | 99.68 | 100.00 | 95.21 | 73.08 | 99.95 |
4 | 84.41 | 95.21 | 98.59 | 94.05 | 97.14 | 99.46 | 97.99 | 99.46 | 99.78 | 94.99 | 98.37 | 99.88 | 99.24 |
5 | 100.00 | 0.00 | 100.00 | 97.03 | 99.26 | 99.83 | 97.55 | 99.59 | 100.00 | 95.80 | 86.23 | 99.92 | 99.42 |
6 | 46.01 | 67.55 | 68.8 | 96.68 | 99.89 | 100.00 | 99.12 | 100.00 | 99.98 | 97.97 | 99.98 | 98.93 | 100.00 |
7 | 59.87 | 0.00 | 0.00 | 93.25 | 98.92 | 99.09 | 94.12 | 100.00 | 97.08 | 61.04 | 94.33 | 92.39 | 99.75 |
8 | 65.22 | 55.57 | 45.55 | 90.16 | 87.98 | 99.96 | 93.96 | 99.91 | 98.33 | 91.90 | 97.81 | 95.75 | 99.52 |
9 | 100.00 | 0.00 | 0.00 | 89.73 | 83.60 | 100.00 | 97.55 | 99.53 | 100.00 | 90.33 | 99.79 | 100.00 | 99.76 |
OA | 62.96 | 67.50 | 66.41 | 95.30 | 97.24 | 98.07 | 98.35 | 98.88 | 99.56 | 96.13 | 98.26 | 97.00 | 99.83 |
AA | 41.33 | 34.26 | 39.88 | 91.71 | 94.24 | 96.85 | 96.07 | 98.80 | 98.78 | 94.83 | 93.93 | 93.27 | 99.54 |
Kappa | 45.12 | 52.43 | 50.45 | 93.74 | 96.35 | 97.43 | 97.81 | 98.51 | 99.41 | 94.89 | 97.69 | 96.02 | 99.77 |
No. | SVM | RF | MLR | 1D_CNN | 2D_CNN | 3D_CNN | HybridSN | MFDN | SSAN | JSSAN | DCRN | MAFN | HS2FNet |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 44.31 | 45.39 | 39.10 | 89.22 | 97.81 | 100.00 | 100.00 | 100.00 | 100.00 | 95.88 | 100.00 | 100.00 | 100.00 |
2 | 92.56 | 71.74 | 0.00 | 48.56 | 93.60 | 98.40 | 98.35 | 98.98 | 100.00 | 98.78 | 30.93 | 98.45 | 100.00 |
3 | 65.19 | 0.00 | 0.00 | 74.56 | 93.00 | 67.00 | 97.06 | 94.86 | 98.07 | 95.34 | 0.00 | 100.00 | 100.00 |
4 | 52.27 | 0.00 | 0.00 | 23.40 | 84.09 | 98.04 | 98.45 | 97.91 | 100.00 | 93.51 | 100.00 | 96.09 | 100.00 |
5 | 61.25 | 0.00 | 0.00 | 64.84 | 97.60 | 97.62 | 96.97 | 99.22 | 100.00 | 88.65 | 0.00 | 98.41 | 100.00 |
6 | 46.90 | 0.00 | 0.00 | 75.84 | 97.53 | 100.00 | 98.35 | 100.00 | 100.00 | 99.44 | 34.31 | 66.17 | 100.00 |
7 | 66.67 | 0.00 | 0.00 | 0.00 | 91.03 | 83.17 | 100.00 | 100.00 | 100.00 | 100.00 | 5.29 | 74.34 | 100.00 |
8 | 86.30 | 78.72 | 49.64 | 65.59 | 97.69 | 51.50 | 99.12 | 99.42 | 99.71 | 95.77 | 0.00 | 99.42 | 100.00 |
9 | 92.79 | 72.64 | 54.59 | 62.73 | 97.15 | 100.00 | 99.05 | 99.05 | 99.52 | 95.58 | 0.00 | 100.00 | 100.00 |
10 | 100.00 | 100.00 | 91.75 | 77.50 | 96.40 | 99.38 | 99.07 | 100.00 | 99.69 | 96.34 | 100.00 | 100.00 | 100.00 |
11 | 100.00 | 96.25 | 70.10 | 74.92 | 95.07 | 100.00 | 98.53 | 100.00 | 99.70 | 99.09 | 100.00 | 100.00 | 100.00 |
12 | 97.82 | 83.81 | 100.00 | 49.91 | 92.92 | 98.52 | 95.26 | 100.00 | 96.40 | 99.75 | 88.01 | 98.53 | 100.00 |
13 | 100.00 | 89.37 | 99.54 | 90.16 | 99.87 | 99.87 | 99.73 | 100.00 | 100.00 | 98.54 | 100.00 | 100.00 | 100.00 |
OA | 75.25 | 72.64 | 61.56 | 70.69 | 95.99 | 88.97 | 98.65 | 99.42 | 99.42 | 96.95 | 47.15 | 96.69 | 100.00 |
AA | 61.41 | 53.58 | 42.38 | 61.93 | 93.85 | 91.41 | 98.18 | 99.00 | 99.12 | 95.30 | 46.82 | 94.99 | 100.00 |
Kappa | 71.90 | 68.80 | 56.09 | 67.28 | 95.53 | 89.78 | 98.50 | 99.36 | 99.36 | 96.60 | 43.32 | 96.31 | 100.00 |
No. | SVM | RF | MLR | 1D_CNN | 2D_CNN | 3D_CNN | HybridSN | MFDN | SSAN | JSSAN | DCRN | MAFN | HS2FNet |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 92.31 | 100.00 | 57.14 | 100.00 | 87.50 | 97.06 | 100.00 | 100.00 | 100.00 | 100.00 | 66.67 | 100.00 | 97.30 |
2 | 64.25 | 63.13 | 61.06 | 86.86 | 100.00 | 89.04 | 94.11 | 99.29 | 99.82 | 82.73 | 99.18 | 98.46 | 99.74 |
3 | 67.11 | 68.09 | 65.84 | 93.14 | 96.74 | 100.00 | 98.77 | 100.00 | 99.85 | 100.00 | 98.91 | 97.22 | 99.85 |
4 | 52.50 | 55.00 | 45.70 | 100.00 | 80.62 | 99.45 | 98.37 | 97.79 | 99.47 | 98.30 | 95.34 | 89.78 | 100.00 |
5 | 84.63 | 86.67 | 67.27 | 97.10 | 94.06 | 89.35 | 97.18 | 100.00 | 98.47 | 92.77 | 91.02 | 100.00 | 100.00 |
6 | 90.58 | 89.44 | 87.30 | 98.27 | 99.31 | 95.09 | 100.00 | 99.66 | 100.00 | 100.00 | 89.55 | 98.15 | 100.00 |
7 | 85.71 | 90.00 | 89.47 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
8 | 95.14 | 88.22 | 91.39 | 100.00 | 100.00 | 98.71 | 99.74 | 100.00 | 100.00 | 97.45 | 92.27 | 94.09 | 100.00 |
9 | 28.57 | 0.00 | 0.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 72.22 | 100.00 | 100.00 |
10 | 71.99 | 71.21 | 65.93 | 95.88 | 94.07 | 100.00 | 96.33 | 99.59 | 99.87 | 94.90 | 99.15 | 96.75 | 100.00 |
11 | 69.86 | 72.01 | 63.44 | 93.98 | 97.04 | 99.84 | 97.78 | 97.85 | 98.39 | 98.68 | 95.30 | 98.49 | 99.49 |
12 | 67.05 | 54.93 | 47.94 | 88.49 | 94.73 | 94.14 | 96.11 | 92.73 | 99.16 | 90.87 | 96.01 | 85.71 | 99.37 |
13 | 90.45 | 91.41 | 92.86 | 100.00 | 97.62 | 100.00 | 9591 | 97.04 | 100.00 | 97.04 | 100.00 | 97.62 | 100.00 |
14 | 86.16 | 84.26 | 86.82 | 98.61 | 98.34 | 99.02 | 100.00 | 99.41 | 100.00 | 99.80 | 99.16 | 99.51 | 99.80 |
15 | 71.36 | 66.53 | 68.80 | 89.17 | 94.95 | 88.00 | 99.66 | 98.09 | 96.54 | 94.12 | 100.00 | 99.35 | 98.40 |
16 | 100.00 | 100.00 | 95.53 | 95.59 | 92.11 | 100.00 | 100.00 | 86.05 | 96.10 | 93.15 | 50.00 | 100.00 | 94.74 |
OA | 74.67 | 73.92 | 70.04 | 94.07 | 96.66 | 96.27 | 97.66 | 98.46 | 99.26 | 94.85 | 95.31 | 97.17 | 99.65 |
AA | 69.18 | 61.06 | 62.13 | 86.67 | 93.95 | 93.19 | 96.33 | 98.69 | 98.82 | 91.59 | 95.24 | 92.80 | 99.57 |
Kappa | 70.86 | 70.16 | 65.41 | 93.22 | 96.19 | 95.75 | 97.33 | 98.25 | 99.15 | 94.13 | 94.66 | 96.77 | 99.60 |
No. | SVM | RF | MLR | 1D_CNN | 2D_CNN | 3D_CNN | HybridSN | MFDN | SSAN | JSSAN | DCRN | MAFN | HS2FNet |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 100.00 | 92.48 | 0.00 | 95.81 | 100.00 | 100.00 | 99.83 | 100.00 | 99.94 | 99.50 | 100.00 | 100.00 | 100.00 |
2 | 99.73 | 98.01 | 64.66 | 92.80 | 100.00 | 100.00 | 100.00 | 100.00 | 64.42 | 99.88 | 100.00 | 100.00 | 100.00 |
3 | 78.28 | 56.51 | 83.35 | 100.00 | 100.00 | 100.00 | 100.00 | 97.96 | 87.55 | 98.67 | 100.00 | 73.93 | 100.00 |
4 | 99.78 | 97.86 | 100.00 | 93.47 | 96.81 | 100.00 | 99.92 | 100.00 | 72.42 | 99.35 | 100.00 | 99.76 | 99.52 |
5 | 96.43 | 60.66 | 51.92 | 88.26 | 99.50 | 99.75 | 99.05 | 99.75 | 98.42 | 99.21 | 95.98 | 99.96 | 99.83 |
6 | 100.00 | 100.00 | 99.97 | 99.55 | 99.28 | 99.97 | 99.94 | 100.00 | 87.42 | 99.92 | 99.97 | 100.00 | 100.00 |
7 | 100.00 | 99.65 | 64.53 | 100.00 | 100.00 | 99.88 | 100.00 | 100.00 | 100.00 | 99.84 | 100.00 | 100.00 | 100.00 |
8 | 30.39 | 41.40 | 59.21 | 98.60 | 98.08 | 83.38 | 99.91 | 100.00 | 94.69 | 99.49 | 100.00 | 100.00 | 100.00 |
9 | 99.40 | 90.16 | 54.31 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 99.61 | 100.00 | 100.00 | 100.00 |
10 | 92.85 | 0.00 | 54.87 | 99.62 | 96.98 | 99.86 | 100.00 | 98.14 | 100.00 | 99.59 | 99.53 | 97.27 | 100.00 |
11 | 99.25 | 0.00 | 0.00 | 100.00 | 98.05 | 100.00 | 100.00 | 98.92 | 95.01 | 100.00 | 100.00 | 100.00 | 100.00 |
12 | 98.82 | 0.00 | 0.00 | 99.83 | 98.27 | 100.00 | 100.00 | 99.77 | 100.00 | 98.97 | 94.55 | 96.98 | 100.00 |
13 | 100.00 | 0.00 | 0.00 | 99.74 | 97.47 | 99.371 | 95.04 | 100.00 | 82.20 | 100.00 | 86.95 | 99.88 | 100.00 |
14 | 100.00 | 0.00 | 0.00 | 70.37 | 100.00 | 86.55 | 100.00 | 100.00 | 99.47 | 70.60 | 100.00 | 100.00 | 100.00 |
15 | 50.72 | 0.00 | 0.01 | 82.93 | 98.95 | 100.00 | 100.00 | 98.10 | 99.95 | 99.82 | 84.53 | 99.27 | 100.00 |
16 | 100.00 | 0.00 | 0.00 | 97.77 | 100.00 | 99.88 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 99.82 | 100.00 |
OA | 58.63 | 64.34 | 61.20 | 94.53 | 98.96 | 95.50 | 99.83 | 99.51 | 92.22 | 98.79 | 96.85 | 98.32 | 99.98 |
AA | 47.82 | 49.53 | 42.15 | 92.51 | 98.89 | 96.91 | 99.77 | 99.38 | 89.46 | 96.44 | 96.90 | 98.78 | 99.97 |
Kappa | 51.51 | 58.50 | 55.64 | 93.92 | 98.85 | 94.98 | 99.81 | 99.45 | 91.32 | 98.66 | 96.50 | 98.13 | 99.98 |
Datasets | Indexes | Top | Bottom | Dense | Cross | Skip | OA | AA | Kappa |
---|---|---|---|---|---|---|---|---|---|
Schemes | |||||||||
UP | Case 1 | √ | √ | 96.21 | 92.00 | 94.96 | |||
Case 2 | √ | √ | 96.65 | 93.59 | 95.56 | ||||
Case 3 | √ | √ | 95.51 | 90.98 | 94.02 | ||||
Case 4 | √ | √ | √ | 98.30 | 96.27 | 97.75 | |||
Case 5 | √ | √ | √ | √ | 98.36 | 96.47 | 97.82 | ||
Case 6 | √ | √ | √ | √ | √ | 99.54 | 99.77 | 99.83 | |
KSC | Case 1 | √ | √ | 85.76 | 75.71 | 84.05 | |||
Case 2 | √ | √ | 93.27 | 90.49 | 92.50 | ||||
Case 3 | √ | √ | 94.76 | 91.87 | 94.16 | ||||
Case 4 | √ | √ | √ | 95.08 | 92.93 | 94.51 | |||
Case 5 | √ | √ | √ | √ | 97.50 | 96.74 | 97.22 | ||
Case 6 | √ | √ | √ | √ | √ | 100 | 100 | 100 | |
IP | Case 1 | √ | √ | 96.94 | 88.22 | 96.51 | |||
Case 2 | √ | √ | 97.13 | 86.79 | 96.74 | ||||
Case 3 | √ | √ | 96.12 | 85.04 | 95.57 | ||||
Case 4 | √ | √ | √ | 97.67 | 90.96 | 97.34 | |||
Case 5 | √ | √ | √ | √ | 97.97 | 95.26 | 97.69 | ||
Case 6 | √ | √ | √ | √ | √ | 99.65 | 99.57 | 99.60 | |
SA | Case 1 | √ | √ | 96.01 | 95.16 | 95.56 | |||
Case 2 | √ | √ | 94.96 | 95.55 | 94.39 | ||||
Case 3 | √ | √ | 96.73 | 96.16 | 96.36 | ||||
Case 4 | √ | √ | √ | 98.62 | 97.35 | 98.46 | |||
Case 5 | √ | √ | √ | √ | 99.12 | 99.04 | 99.02 | ||
Case 6 | √ | √ | √ | √ | √ | 99.98 | 99.97 | 99.98 |
Datasets | Schemes | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 |
---|---|---|---|---|---|---|---|---|
Indexes | ||||||||
UP | OA | 97.42 | 97.86 | 97.79 | 97.89 | 97.89 | 98.39 | 99.54 |
AA | 93.70 | 95.18 | 95.33 | 95.60 | 95.60 | 96.32 | 99.77 | |
Kappa | 96.57 | 97.16 | 97.07 | 97.19 | 97.19 | 97.87 | 99.83 | |
KSC | OA | 93.13 | 91.93 | 90.34 | 87.24 | 90.46 | 87.44 | 100 |
AA | 89.59 | 88.48 | 84.76 | 80.56 | 85.93 | 77.00 | 100 | |
Kappa | 92.32 | 90.97 | 89.19 | 85.71 | 89.33 | 85.87 | 100 | |
IP | OA | 96.35 | 96.50 | 97.00 | 95.29 | 97.22 | 98.07 | 99.65 |
AA | 83.80 | 84.57 | 84.36 | 78.99 | 90.95 | 93.60 | 99.57 | |
Kappa | 95.84 | 96.00 | 96.89 | 94.63 | 96.83 | 97.80 | 99.60 | |
SA | OA | 96.44 | 95.88 | 96.40 | 94.64 | 96.11 | 96.57 | 99.98 |
AA | 97.14 | 95.62 | 96.72 | 93.07 | 96.22 | 95.24 | 99.97 | |
Kappa | 96.04 | 95.42 | 96.00 | 94.03 | 95.67 | 96.18 | 99.98 |
Datasets | Schemes | CN1 | CN2 | CN3 |
---|---|---|---|---|
Indexes | ||||
UP | OA | 95.98 | 96.27 | 99.54 |
AA | 93.80 | 94.21 | 99.77 | |
Kappa | 94.65 | 95.04 | 99.83 | |
KSC | OA | 84.60 | 91.16 | 100 |
AA | 78.84 | 87.46 | 100 | |
Kappa | 82.73 | 90.12 | 100 | |
IP | OA | 85.77 | 91.43 | 99.65 |
AA | 70.19 | 77.72 | 99.57 | |
Kappa | 83.68 | 90.22 | 99.60 | |
SA | OA | 91.47 | 94.93 | 99.98 |
AA | 92.41 | 96.84 | 99.97 | |
Kappa | 90.48 | 94.35 | 99.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Han, G.; Liu, P.; Wang, Y.; Yang, H.; Chen, D.; Li, Q.; Wu, J. A Hybrid-Order Spectral-Spatial Feature Network for Hyperspectral Image Classification. Remote Sens. 2022, 14, 3555. https://doi.org/10.3390/rs14153555
Liu D, Han G, Liu P, Wang Y, Yang H, Chen D, Li Q, Wu J. A Hybrid-Order Spectral-Spatial Feature Network for Hyperspectral Image Classification. Remote Sensing. 2022; 14(15):3555. https://doi.org/10.3390/rs14153555
Chicago/Turabian StyleLiu, Dongxu, Guangliang Han, Peixun Liu, Yirui Wang, Hang Yang, Dianbing Chen, Qingqing Li, and Jiajia Wu. 2022. "A Hybrid-Order Spectral-Spatial Feature Network for Hyperspectral Image Classification" Remote Sensing 14, no. 15: 3555. https://doi.org/10.3390/rs14153555
APA StyleLiu, D., Han, G., Liu, P., Wang, Y., Yang, H., Chen, D., Li, Q., & Wu, J. (2022). A Hybrid-Order Spectral-Spatial Feature Network for Hyperspectral Image Classification. Remote Sensing, 14(15), 3555. https://doi.org/10.3390/rs14153555