VIGIA: A Thermal and Visible Imagery System to Track Volcanic Explosions
Abstract
:1. Introduction
2. Brief, Non-Exhaustive, History of Permanently Deployed Instrumentation for Thermography
3. Materials and Methods
3.1. Power System
3.2. Computer Unit
3.3. Thermal Module
3.4. Visible Module
3.5. Volcano Recognition
3.6. Communication Module
4. Results
5. Summary and Further Work
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newhall, C.G.; Punongbayan, R.S. Pinatubo! Bull. Volcanol. 1995, 57, 147–152. [Google Scholar] [CrossRef]
- Saltykovskii, A.Y. The Eruption of Eyjafjallajökull (Iceland) in Spring 2010 and Its Possible Consequences. Izv. Atmospheric Ocean. Phys. 2012, 48, 683–695. [Google Scholar] [CrossRef]
- Hall, M.; Ramón, P.; Mothes, P.; LePennec, J.L.; García, A.; Samaniego, P.; Yepes, H. Volcanic Eruptions with Little Warning: The Case of Volcán Reventador’s Surprise 3 November 2002 Eruption, Ecuador. Rev. Geol. Chile 2004, 31, 349–358. [Google Scholar] [CrossRef]
- Eychenne, J.; Le Pennec, J.-L.; Troncoso, L.; Gouhier, M.; Nedelec, J.-M. Causes and Consequences of Bimodal Grain-Size Distribution of Tephra Fall Deposited during the August 2006 Tungurahua Eruption (Ecuador). Bull. Volcanol. 2012, 74, 187–205. [Google Scholar] [CrossRef]
- Morton, B.R.; Taylor, G.I.S.; Turner, J.S. Turbulent Gravitational Convection from Maintained and Instantaneous Sources. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1956, 234, 1–23. [Google Scholar]
- Wilson, L.; Sparks, R.S.J.; Huang, T.C.; Watkins, N.D. The Control of Volcanic Column Heights by Eruption Energetics and Dynamics. J. Geophys. Res. Solid Earth 1978, 83, 1829–1836. [Google Scholar] [CrossRef] [Green Version]
- Wilson, L.; Self, S. Volcanic Explosion Clouds: Density, Temperature, and Particle Content Estimates from Cloud Motion. J. Geophys. Res. 1980, 85, 2567. [Google Scholar] [CrossRef]
- Sahetapy-Engel, S.T.; Harris, A.J.L. Thermal-Image-Derived Dynamics of Vertical Ash Plumes at Santiaguito Volcano, Guatemala. Bull. Volcanol. 2009, 71, 827–830. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Ripepe, M.; Hughes, E.A. Detailed Analysis of Particle Launch Velocities, Size Distributions and Gas Densities during Normal Explosions at Stromboli. J. Volcanol. Geotherm. Res. 2012, 231–232, 109–131. [Google Scholar] [CrossRef]
- Bonadonna, C.; Phillips, J.C. Sedimentation from Strong Volcanic Plumes: SEDIMENTATION FROM VOLCANIC PLUMES. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Costa, A.; Macedonio, G.; Folch, A. A Three-Dimensional Eulerian Model for Transport and Deposition of Volcanic Ashes. Earth Planet. Sci. Lett. 2006, 241, 634–647. [Google Scholar] [CrossRef]
- Parra, R.; Bernard, B.; Narváez, D.; Le Pennec, J.-L.; Hasselle, N.; Folch, A. Eruption Source Parameters for Forecasting Ash Dispersion and Deposition from Vulcanian Eruptions at Tungurahua Volcano: Insights from Field Data from the July 2013 Eruption. J. Volcanol. Geotherm. Res. 2016, 309, 1–13. [Google Scholar] [CrossRef]
- Formenti, Y.; Druitt, T.H.; Kelfoun, K. Characterisation of the 1997 Vulcanian Explosions of Soufrière Hills Volcano, Montserrat, by Video Analysis. Bull. Volcanol. 2003, 65, 587–605. [Google Scholar] [CrossRef]
- Ramsey, M.S.; Harris, A.J.L. Volcanology 2020: How Will Thermal Remote Sensing of Volcanic Surface Activity Evolve over the next Decade? J. Volcanol. Geotherm. Res. 2013, 249, 217–233. [Google Scholar] [CrossRef]
- Carter, A.J.; Ramsey, M.S.; Belousov, A.B. Detection of a New Summit Crater on Bezymianny Volcano Lava Dome: Satellite and Field-Based Thermal Data. Bull. Volcanol. 2007, 69, 811–815. [Google Scholar] [CrossRef] [Green Version]
- Mothes, P.A.; Ruiz, M.C.; Viracucha, E.G.; Ramón, P.A.; Hernández, S.; Hidalgo, S.; Bernard, B.; Gaunt, E.H.; Jarrín, P.; Yépez, M.A.; et al. Geophysical Footprints of Cotopaxi’s Unrest and Minor Eruptions in 2015: An Opportunity to Test Scientific and Community Preparedness. In Volcanic Unrest: From Science to Society; Gottsmann, J., Neuberg, J., Scheu, B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 241–270. ISBN 978-3-319-58412-6. [Google Scholar]
- Calvari, S.; Intrieri, E.; Di Traglia, F.; Bonaccorso, A.; Casagli, N.; Cristaldi, A. Monitoring Crater-Wall Collapse at Active Volcanoes: A Study of the 12 January 2013 Event at Stromboli. Bull. Volcanol. 2016, 78, 39. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; Pinkerton, H.; Ball, M. Oblique Photogrammetry with Visible and Thermal Images of Active Lava Flows. Bull. Volcanol. 2006, 69, 105–108. [Google Scholar] [CrossRef]
- Kelfoun, K.; Vallejo Vargas, S. VolcFlow Capabilities and Potential Development for the Simulation of Lava Flows. Geol. Soc. Lond. Spec. Publ. 2015. [Google Scholar] [CrossRef]
- Di Traglia, F.; Calvari, S.; D’Auria, L.; Nolesini, T.; Bonaccorso, A.; Fornaciai, A.; Esposito, A.; Cristaldi, A.; Favalli, M.; Casagli, N. The 2014 Effusive Eruption at Stromboli: New Insights from In Situ and Remote-Sensing Measurements. Remote Sens. 2018, 10, 2035. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.L.; Steele, A.L.; Bernard, B.; Mothes, P.A.; Vallejo, S.X.; Douillet, G.A.; Ramón, P.A.; Aguaiza, S.X.; Ruiz, M.C. Sequential Plug Formation, Disintegration by Vulcanian Explosions, and the Generation of Granular Pyroclastic Density Currents at Tungurahua Volcano (2013–2014), Ecuador. J. Volcanol. Geotherm. Res. 2015, 306, 90–103. [Google Scholar] [CrossRef]
- Calvari, S.; Di Traglia, F.; Ganci, G.; Giudicepietro, F.; Macedonio, G.; Cappello, A.; Nolesini, T.; Pecora, E.; Bilotta, G.; Centorrino, V.; et al. Overflows and Pyroclastic Density Currents in March-April 2020 at Stromboli Volcano Detected by Remote Sensing and Seismic Monitoring Data. Remote Sens. 2020, 12, 3010. [Google Scholar] [CrossRef]
- Harris, A.J.; Rose, W.I.; Flynn, L.P. Temporal Trends in Lava Dome Extrusion at Santiaguito 1922–2000. Bull. Volcanol. 2003, 65, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.J.L.; Dehn, J.; Calvari, S. Lava Effusion Rate Definition and Measurement: A Review. Bull. Volcanol. 2007, 70, 1–22. [Google Scholar] [CrossRef]
- Kelfoun, K.; Santoso, A.B.; Latchimy, T.; Bontemps, M.; Nurdien, I.; Beauducel, F.; Fahmi, A.; Putra, R.; Dahamna, N.; Laurin, A.; et al. Growth and Collapse of the 2018–2019 Lava Dome of Merapi Volcano. Bull. Volcanol. 2021, 83, 8. [Google Scholar] [CrossRef]
- Oppenheimer, C.; Yirgu, G. Thermal Imaging of an Active Lava Lake: Erta ’Ale Volcano, Ethiopia. Int. J. Remote Sens. 2002, 23, 4777–4782. [Google Scholar] [CrossRef]
- Patrick, M.R.; Swanson, D.; Orr, T. Automated Tracking of Lava Lake Level Using Thermal Images at Kīlauea Volcano, Hawai’i. J. Appl. Volcanol. 2016, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Patrick, M.R.; Harris, A.J.L.; Ripepe, M.; Dehn, J.; Rothery, D.A.; Calvari, S. Strombolian Explosive Styles and Source Conditions: Insights from Thermal (FLIR) Video. Bull. Volcanol. 2007, 69, 769–784. [Google Scholar] [CrossRef]
- Calvari, S.; Giudicepietro, F.; Di Traglia, F.; Bonaccorso, A.; Macedonio, G.; Casagli, N. Variable Magnitude and Intensity of Strombolian Explosions: Focus on the Eruptive Processes for a First Classification Scheme for Stromboli Volcano (Italy). Remote Sens. 2021, 13, 944. [Google Scholar] [CrossRef]
- Patrick, M.R. Strombolian Eruption Dynamics From Thermal (FLIR) Video Imagery. Ph.D. Thesis, University of Hawaiʻi, Honolulu, HI, USA, 2005. [Google Scholar]
- Lopez, T.; Thomas, H.E.; Prata, A.J.; Amigo, A.; Fee, D.; Moriano, D. Volcanic Plume Characteristics Determined Using an Infrared Imaging Camera. J. Volcanol. Geotherm. Res. 2015, 300, 148–166. [Google Scholar] [CrossRef] [Green Version]
- Wood, K.; Thomas, H.; Watson, M.; Calway, A.; Richardson, T.; Stebel, K.; Naismith, A.; Berthoud, L.; Lucas, J. Measurement of Three Dimensional Volcanic Plume Properties Using Multiple Ground Based Infrared Cameras. ISPRS J. Photogramm. Remote Sens. 2019, 154, 163–175. [Google Scholar] [CrossRef]
- Yokoo, A. Continuous Thermal Monitoring of the 2008 Eruptions at Showa Crater of Sakurajima Volcano, Japan. Earth Planets Space 2009, 61, 1345–1350. [Google Scholar] [CrossRef] [Green Version]
- Patrick, M.R.; Orr, T.; Antolik, L.; Lee, L.; Kamibayashi, K. Continuous Monitoring of Hawaiian Volcanoes with Thermal Cameras. J. Appl. Volcanol. 2014, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Jaggar, T.A. Volcanologic Investigations at Kilauea. Am. J. Sci. 1917, 44, 160–220. [Google Scholar] [CrossRef] [Green Version]
- Jaggar, T.A. Thermal Gradient of Kilauea Lava Lake. J. Wash. Acad. Sci. 1917, 7, 397–405. [Google Scholar]
- Zies, E.G. Temperatures of Volcanoes, Fumaroles, and Hotsprings. In Temperature: Its Measurement and Control inScience and Industry; Reinhold Publishing Corporation: New York, NY, USA, 1941; pp. 372–380. [Google Scholar]
- Zettwoog, P.; Tazieff, H. Instrumentation for Measuring and Recording Mass and Energy Transfer from Volcanoes to Atmosphere. Bull. Volcanol. 1972, 36, 1–19. [Google Scholar] [CrossRef]
- Moxham, R.M. Thermal Surveillance of Volcanoes. In The Surveillance and Prediction of Volcanic Activity; UNESCO: Paris, France; p. 22.
- Harris, A. Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2013; ISBN 978-0-521-85945-5. [Google Scholar]
- Moxham, R.M.; Boynton, G.R.; Cote, C.E. Satellite Telemetry of Fumarole Temperatures, Mount Rainier, Washington. Bull. Volcanol. 1972, 36, 191–199. [Google Scholar] [CrossRef]
- Brivio, P.A.; Tomasoni, R. Thermal Infrared Continuous Ground Measurements in Severe Environment: A Working Data Collection System. Proc. 14th Int. Symp. Remote Sens. Environ. 1980, III, 1731–1740. [Google Scholar]
- Thornber, C.R. HVO/RTVS-1: A Prototype Remote Video Telemetry System for Monitoring the Kilauea East Rift Zone Eruption; Open-File Report; USGS: Hawaii, HI, USA, 1997. [Google Scholar]
- Harris, A.; Pirie, D.; Horton, K.; Garbeil, H.; Pilger, E.; Ramm, H.; Hoblitt, R.; Thornber, C.; Ripepe, M.; Marchetti, E.; et al. DUCKS: Low Cost Thermal Monitoring Units for near-Vent Deployment. J. Volcanol. Geotherm. Res. 2005, 143, 335–360. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Ripepe, M.; Calvari, S.; Lodato, L.; Spampinato, L. The 5 April 2003 Explosion of Stromboli: Timing of Eruption Dynamics Using Thermal Data. In Geophysical Monograph Series; Calvari, S., Inguaggiato, S., Puglisi, G., Ripepe, M., Rosi, M., Eds.; American Geophysical Union: Washington, DC, USA, 2013; pp. 305–316. ISBN 978-1-118-66634-0. [Google Scholar]
- Aster, R.; MacIntosh, W.; Kyle, P.; Esser, R.; Bartel, B.; Dunbar, N.; Johnson, J.; Karstens, R.; Kurnik, C.; McGowan, M.; et al. Real-Time Data Received from Mount Erebus Volcano, Antarctica. Eos Trans. Am. Geophys. Union 2004, 85, 97. [Google Scholar] [CrossRef] [Green Version]
- FLIR Systems ThermoVision A20 M Operator’s Manual 2004. Available online: https://manualzz.com/doc/26249081/thermovision%E2%84%A2-a20 (accessed on 10 February 2022).
- Andò, B.; Pecora, E. An Advanced Video-Based System for Monitoring Active Volcanoes. Comput. Geosci. 2006, 32, 85–91. [Google Scholar] [CrossRef]
- Calvari, S.; Salerno, G.G.; Spampinato, L.; Gouhier, M.; La Spina, A.; Pecora, E.; Harris, A.J.L.; Labazuy, P.; Biale, E.; Boschi, E. An Unloading Foam Model to Constrain Etna’s 11–13 January 2011 Lava Fountaining Episode: THE 11–13 JAN 2011 ETNA’S LAVA FOUNTAIN. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef]
- Scollo, S.; Prestifilippo, M.; Pecora, E.; Corradini, S.; Merucci, L.; Spata, G.; Coltelli, M. Eruption Column Height Estimation of the 2011–2013 Etna Lava Fountains. Ann. Geophys. 2014, 57, 3. [Google Scholar] [CrossRef] [Green Version]
- Lodato, L.; Spampinato, L.; Harris, A.J.L.; Dehn, J.; James, M.R.; Pecora, E.; Biale, E.; Curcuruto, A. Use of Forward Looking InfraRed Thermal Cameras at Active Volcanoes. In Conception, Verification and Application of Innovative Techniques to Study Active Volcanoes; Instituto Nazionale di Geofisica e Vulcanologia: Napoli, Italy, 2008; pp. 427–434. ISBN 978-88-89972-09-0. [Google Scholar]
- Delle Donne, D.; Lacanna, G.; Marchetti, E.; Ripepe, M.; Ulivieri, G. Monitoring Explosive Volcanic Activity Using Thermal Images, Stromboli Volcano, Italy. In Proceedings of the AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA; Volume 2006, p. V43B-1795.
- Pailot-Bonnétat, S.; Harris, A.J.L.; Calvari, S.; De Michele, M.; Gurioli, L. Plume Height Time-Series Retrieval Using Shadow in Single Spatial Resolution Satellite Images. Remote Sens. 2020, 12, 3951. [Google Scholar] [CrossRef]
- Dürig, T.; Gudmundsson, M.T.; Dioguardi, F.; Woodhouse, M.; Björnsson, H.; Barsotti, S.; Witt, T.; Walter, T.R. REFIR- A Multi-Parameter System for near Real-Time Estimates of Plume-Height and Mass Eruption Rate during Explosive Eruptions. J. Volcanol. Geotherm. Res. 2018, 360, 61–83. [Google Scholar] [CrossRef]
- Stone, J.; Barclay, J.; Simmons, P.; Cole, P.D.; Loughlin, S.C.; Ramón, P.; Mothes, P. Risk Reduction through Community-Based Monitoring: The Vigías of Tungurahua, Ecuador. J. Appl. Volcanol. 2014, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Mothes, P.A.; Yepes, H.A.; Hall, M.L.; Ramón, P.A.; Steele, A.L.; Ruiz, M.C. The Scientific–Community Interface over the Fifteen-Year Eruptive Episode of Tungurahua Volcano, Ecuador. J. Appl. Volcanol. 2015, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Evocortex IRImager Direct SDK. Available online: http://documentation.evocortex.com/libirimager2/html/index.html (accessed on 10 February 2022).
- Almeida, M.; Gaunt, H.; Ramón, P. Ecuador’s El Reventador Volcano Continually Remakes Itself. Eos 2019, 100. [Google Scholar] [CrossRef]
- Weiser, P.; Liebe, O.; Mähler, A.; Kiselev, A.; Gkouma, L.; Plichta, M.; Allmrodt, H.; Kahl, H.; Jenz, F.; Shestak, D.; et al. AnyDesk; Stuttgart, Germany, 2021. Available online: https://anydesk.com/en (accessed on 10 February 2022).
- DWSNET OÜ DWService. Available online: https://www.dwservice.net (accessed on 10 February 2022).
- Ripepe, M.; Bonadonna, C.; Folch, A.; Delle Donne, D.; Lacanna, G.; Marchetti, E.; Höskuldsson, A. Ash-Plume Dynamics and Eruption Source Parameters by Infrasound and Thermal Imagery: The 2010 Eyjafjallajökull Eruption. Earth Planet. Sci. Lett. 2013, 366, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.; Ripepe, M. Synergy of Multiple Geophysical Approaches to Unravel Explosive Eruption Conduit and Source Dynamics–A Case Study from Stromboli. Geochemistry 2007, 67, 1–35. [Google Scholar] [CrossRef]
- Sahetapy-Engel, S.T.; Harris, A.J.L.; Marchetti, E. Thermal, Seismic and Infrasound Observations of Persistent Explosive Activity and Conduit Dynamics at Santiaguito Lava Dome, Guatemala. J. Volcanol. Geotherm. Res. 2008, 173, 1–14. [Google Scholar] [CrossRef]
- Capponi, A.; Taddeucci, J.; Scarlato, P.; Palladino, D.M. Recycled Ejecta Modulating Strombolian Explosions. Bull. Volcanol. 2016, 78, 13. [Google Scholar] [CrossRef] [Green Version]
- Vallejo Vargas, S.; Hernandez, S.; Battaglia, J.; Ortiz, H.D.; Ramon, P.; Hidalgo, S.; Vasconez, F.; Cordova, J.; Proaño, A. Partial Summit Collapse at El Reventador Volcano (Ecuador) and Its Subsequent Activity Observed in Thermal Imaging, Seismo-Acoustic Signals and SO2 Degasification. In Proceedings of the AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2019; Volume 51. [Google Scholar]
- Bani, P.; Harris, A.J.L.; Shinohara, H.; Donnadieu, F. Magma Dynamics Feeding Yasur’s Explosive Activity Observed Using Thermal Infrared Remote Sensing: YASUR THERMAL SENSING. Geophys. Res. Lett. 2013, 40, 3830–3835. [Google Scholar] [CrossRef]
- Thivet, S.; Harris, A.J.L.; Gurioli, L.; Bani, P.; Barnie, T.; Bombrun, M.; Marchetti, E. Multi-Parametric Field Experiment Links Explosive Activity and Persistent Degassing at Stromboli. Front. Earth Sci. 2021, 9, 669661. [Google Scholar] [CrossRef]
VIGIA System | Seismicity-Based Monitoring System | Video-Based Monitoring System | |
---|---|---|---|
Day/night detection | Yes | Yes | Daytime only |
Dependence on meteorological conditions | Yes | No | Yes |
Installation complexity | Medium | High | Medium |
On-site data processing | High | Medium | Medium |
Data volume (per hour) | ~20 GB (depends on the number of explosions detected) | ~9 MB. Including 3 components, 100 sps, metadata. | ~4 GB (depends on the resolution and compression) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vásconez, F.; Moussallam, Y.; Harris, A.J.L.; Latchimy, T.; Kelfoun, K.; Bontemps, M.; Macías, C.; Hidalgo, S.; Córdova, J.; Battaglia, J.; et al. VIGIA: A Thermal and Visible Imagery System to Track Volcanic Explosions. Remote Sens. 2022, 14, 3355. https://doi.org/10.3390/rs14143355
Vásconez F, Moussallam Y, Harris AJL, Latchimy T, Kelfoun K, Bontemps M, Macías C, Hidalgo S, Córdova J, Battaglia J, et al. VIGIA: A Thermal and Visible Imagery System to Track Volcanic Explosions. Remote Sensing. 2022; 14(14):3355. https://doi.org/10.3390/rs14143355
Chicago/Turabian StyleVásconez, Freddy, Yves Moussallam, Andrew J. L. Harris, Thierry Latchimy, Karim Kelfoun, Martial Bontemps, Carlos Macías, Silvana Hidalgo, Jorge Córdova, Jean Battaglia, and et al. 2022. "VIGIA: A Thermal and Visible Imagery System to Track Volcanic Explosions" Remote Sensing 14, no. 14: 3355. https://doi.org/10.3390/rs14143355
APA StyleVásconez, F., Moussallam, Y., Harris, A. J. L., Latchimy, T., Kelfoun, K., Bontemps, M., Macías, C., Hidalgo, S., Córdova, J., Battaglia, J., Mejía, J., Arrais, S., Vélez, L., & Ramos, C. (2022). VIGIA: A Thermal and Visible Imagery System to Track Volcanic Explosions. Remote Sensing, 14(14), 3355. https://doi.org/10.3390/rs14143355