Evaluation of Total Ozone Column from Multiple Satellite Measurements in the Antarctic Using the Brewer Spectrophotometer
Abstract
:1. Introduction
2. Data
2.1. Ground-Based TOC Measurement Using the Brewer
2.2. Satellite TOC measurement
2.2.1. OMI/Aura
2.2.2. TROPOMI/S-5P
2.2.3. OMPS/Suomi NPP
2.2.4. AIRS/Aqua
2.2.5. GOME-2/MetOp
3. Methodology
4. Results and Discussion
5. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farman, J.C.; Gardiner, B.G.; Shanklin, J.D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 1985, 315, 207–210. [Google Scholar] [CrossRef]
- Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 1999, 37, 275–316. [Google Scholar] [CrossRef]
- Son, S.-W.; Tandon, N.F.; Polvani, L.M.; Waugh, D.W. Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Son, S.-W.; Gerber, E.P.; Perlwitz, J.; Polvani, L.M.; Gillett, N.P.; Seo, K.-H.; Eyring, V.; Shepherd, T.G.; Waugh, D.; Akiyoshi, H.; et al. Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.W.J.; Solomon, S.; Kushner, P.J.; England, M.H.; Grise, K.M.; Karoly, D.J. Signatures of the Antarctic ozone hole in the Southern Hemisphere surface climate change. Nat. Geosci. 2011, 4, 741–749. [Google Scholar] [CrossRef]
- Hegglin, M.I.; Shepherd, T.G. Large climate-induced changes in the ultraviolet index and stratosphere-to-troposphere ozone flux. Nat. Geosci. 2009, 2, 687–691. [Google Scholar] [CrossRef]
- Solomon, S.; Thompson, D.W.J.; Portmann, R.W.; Oltmans, S.J.; Thompson, A.M. On the distribution and variability of ozone in the tropical upper troposphere: Implications for tropical deep convection and chemical-dynamical coupling. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Sigmond, M.; Fyfe, J.C. Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Hendon, H.H.; Thompson, D.W.J.; Wheeler, M.C. Australian rainfall and surface temperature variations are associated with the southern hemisphere annular mode. J. Clim. 2007, 20, 2452–2467. [Google Scholar] [CrossRef]
- Marshall, A.G.; Hudson, D.; Wheeler, M.C.; Alves, O.; Hendon, H.H.; Pook, M.J.; Risbey, J.S. Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Clim. Dyn. 2014, 43, 1915–1937. [Google Scholar] [CrossRef]
- Koo, J.H.; Walker, K.A.; Jones, A.; Sheese, P.E.; Boone, C.D.; Bernath, P.F.; Manney, G.L. Global climatology based on the ACE-FTS version 3.5 dataset: Addition of mesospheric levels and carbon-containing species in the UTLS. J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 52–62. [Google Scholar] [CrossRef]
- Vanicek, K.; Dubrovskym, M.; Stanek, M. Evaluation of Dobson and Brewer Total Ozone Observations from Hradec Králové, Czech Republic, 1962–2002. Publication of the Czech Hydrometeorological Institute: Prague, 2003; pp. 5–55. ISBN 80-86690-10-5. Available online: http://www.o3soft.eu/dobsonweb/messages/vanicekd074reeval.pdf (accessed on 8 February 2021).
- Vanicek, K. Differences between ground Dobson, Brewer, and satellite TOMS-8 and GOME-WFDOAS total ozone observations at Hradec Kralove, Czech Republic. Atmos. Chem. Phys. 2006, 6, 5163–5171. [Google Scholar] [CrossRef] [Green Version]
- Koo, J.-H.; Choi, T.; Lee, H.; Kim, J.; Ahn, D.H.; Kim, J.; Kim, Y.H.; Yoo, C.H.; Hong, H.K.; Moon, K.J.; et al. Total ozone characteristics associated with regional meteorology in West Antarctica. Atmos. Environ. 2018, 195, 78–88. [Google Scholar] [CrossRef]
- Damiani, A.; De Simone, S.; Rafanelli, C.; Cordero, R.R.; Laurenza, M. Three years of ground-based total ozone measurements in the Arctic: Comparison with OMI, GOME and SCIAMACHY satellite data. Remote Sens. Environ. 2012, 127, 162–180. [Google Scholar] [CrossRef]
- Balis, D.; Lambert, J.-C.; Van Roozendael, M.; Spurr, R.; Loyola, D.; Livschitz, Y.; Valks, P.; Amiridis, V.; Gerard, P.; Granville, J.; et al. Ten years of GOME/ERS2 total ozone data—The new GOME data processor (GDP) version 4: 2. Ground-based validation and comparisons with TOMS V7/V8. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Bai, K.; Liu, C.; Shi, R.; Zhang, Y.; Gao, W. Global validation of FY-3A total ozone unit (TOU) total ozone columns using ground-based Brewer and Dobson measurements. Int. J. Remote Sens. 2013, 34, 5228–5242. [Google Scholar] [CrossRef]
- Boynard, A.; Hurtmans, D.; Garane, K.; Goutail, F.; Hadji-Lazaro, J.; Koukouli, M.E.; Wespes, C.; Vigouroux, C.; Keppens, A.; Pommereau, J.P.; et al. Validation of the IASI FORLI/EUMETSAT ozone products using satellite (GOME-2), ground-based (Brewer–Dobson, SAOZ, FTIR) and ozonesonde measurements. Atmos. Meas. Tech. 2018, 11, 5125–5152. [Google Scholar] [CrossRef] [Green Version]
- Antón, M.; López, M.; Vilaplana, J.M.; Kroon, M.; McPeters, R.; Bañón, M.; Serrano, A. Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian peninsula. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Antón, M.; Kroon, M.; López, M.; Vilaplana, J.M.; Bañón, M.; van der A, R.; Veefkind, J.P.; Stammes, P.; Alados-Arboledas, L. Total Ozone Column Derived from Gome and Sciamachy Using Knmi Retrieval Algorithms: Validation against Brewer Measurements at the Iberian Peninsula. J. Geophys. Res. 2011, 116, D22. [Google Scholar] [CrossRef] [Green Version]
- Verhoelst, T.; Granville, J.; Hendrick, F.; Köhler, U.; Lerot, C.; Pommereau, J.P.; Redondas, A.; Van Roozendael, M.; Lambert, J.C. Metrology of ground-based satellite validation: Co-location mismatch and smoothing issues of total ozone comparisons. Atmos. Meas. Tech. 2015, 8, 5039–5062. [Google Scholar] [CrossRef] [Green Version]
- Hendrick, F.; Pommereau, J.P.; Goutail, F.; Evans, R.D.; Ionov, D.; Pazmino, A.; Kyrö, E.; Held, G.; Eriksen, P.; Dorokhov, V.; et al. NDACC/SAOZ UV-visible total ozone measurements: Improved retrieval and comparison with correlative ground-based and satellite observations. Atmos. Chem. Phys. 2011, 11, 5975–5995. [Google Scholar] [CrossRef] [Green Version]
- Boynard, A.; Hurtmans, D.; Koukouli, M.E.; Goutail, F.; Bureau, J.; Safieddine, S.; Lerot, C.; Hadji-Lazaro, J.; Wespes, C.; Pommereau, J.P.; et al. Seven years of IASI ozone retrievals from FORLI: Validation with independent total column and vertical profile measurements. Atmos. Meas. Tech. 2016, 9, 4327–4353. [Google Scholar] [CrossRef] [Green Version]
- Garane, K.; Lerot, C.; Coldewey-Egbers, M.; Verhoelst, T.; Koukouli, M.E.; Zyrichidou, I.; Balis, D.S.; Danckaert, T.; Goutail, F.; Granville, J.; et al. Quality assessment of the Ozone_cci Climate Research Data Package (release 2017)—Part 1: Ground-based validation of total ozone column data products. Atmos. Meas. Tech. 2018, 11, 1385–1402. [Google Scholar] [CrossRef] [Green Version]
- Baek, K.; Kim, J.H.; Herman, J.R.; Haffner, D.P.; Kim, J. Validation of Brewer and Pandora measurements using OMI total ozone. Atmos. Environ. 2017, 160, 165–175. [Google Scholar] [CrossRef]
- Herman, J.; Evans, R.; Cede, A.; Abuhassan, N.; Petropavlovskikh, I.; McConville, G.; Miyagawa, K.; Noirot, B. Ozone comparison between Pandora #34, Dobson #061, OMI, and OMPS in Boulder, Colorado, for the period December 2013–December 2016. Atmos. Meas. Tech. 2017, 10, 3539–3545. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, J.; Cho, H.K.; Herman, J.; Park, S.S.; Lim, H.K.; Kim, J.H.; Miyagawa, K.; Lee, Y.G. Intercomparison of total column ozone data from the Pandora spectrophotometer with Dobson, Brewer, and OMI measurements over Seoul, Korea. Atmos. Meas. Tech. 2017, 10, 3661–3676. [Google Scholar] [CrossRef] [Green Version]
- Boynard, A.; Clerbaux, C.; Coheur, P.F.; Hurtmans, D.; Turquety, S.; George, M.; Hadji-Lazaro, J.; Keim, C.; Meyer-Arnek, J. Measurements of total and tropospheric ozone from IASI: Comparison with correlative satellite, ground-based and ozonesonde observations. Atmos. Chem. Phys. 2009, 9, 6255–6271. [Google Scholar] [CrossRef] [Green Version]
- Dufour, G.; Eremenko, M.; Griesfeller, A.; Barret, B.; LeFlochmoën, E.; Clerbaux, C.; Hadji-Lazaro, J.; Coheur, P.F.; Hurtmans, D. Validation of three different scientific ozone products retrieved from IASI spectra using ozonesondes. Atmos. Meas. Tech. 2012, 5, 611–630. [Google Scholar] [CrossRef] [Green Version]
- Gazeaux, J.; Clerbaux, C.; George, M.; Hadji-Lazaro, J.; Kuttippurath, J.; Coheur, P.F.; Hurtmans, D.; Deshler, T.; Kovilakam, M.; Campbell, P.; et al. Intercomparison of polar ozone profiles by IASI/MetOp sounder with 2010 Concordiasi ozonesonde observations. Atmos. Meas. Tech. 2013, 6, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Bramstedt, K.; Gleason, J.; Loyola, D.; Thomas, W.; Bracher, A.; Weber, M.; Burrows, J.P. Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996–2000. Atmos. Chem. Phys. 2003, 3, 1409–1419. [Google Scholar] [CrossRef] [Green Version]
- Garane, K.; Koukouli, M.E.; Verhoelst, T.; Lerot, C.; Heue, K.-P.; Fioletov, V.; Balis, D.; Bais, A.; Bazureau, A.; Dehn, A.; et al. TROPOMI/S5P total ozone column data: Global ground-based validation and consistency with other satellite missions. Atmos. Meas. Tech. 2019, 12, 5263–5287. [Google Scholar] [CrossRef] [Green Version]
- Ialongo, I.; Casale, G.R.; Siani, A.M. Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome Station. Atmos. Chem. Phys. 2008, 8, 3283–3289. [Google Scholar] [CrossRef] [Green Version]
- McPeters, R.; Kroon, M.; Labow, G.; Brinksma, E.; Balis, D.; Petropavlovskikh, I.; Veefkind, J.P.; Bhartia, P.K.; Levelt, P.F. Validation of the Aura Ozone Monitoring Instrument total column ozone product. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Bak, J.; Liu, X.; Kim, J.H.; Chance, K.; Haffner, D.P. Validation of OMI total ozone retrievals from the SAO ozone profile algorithm and three operational algorithms with Brewer measurements. Atmos. Chem. Phys. 2015, 15, 667–683. [Google Scholar] [CrossRef] [Green Version]
- Siani, A.M.; Frasca, F.; Scarlatti, F.; Religi, A.; Diémoz, H.; Casale, G.R.; Pedone, M.; Savastiouk, V. Examination of total ozone column retrievals by Brewer Spectrophotometry using different processing software. Atmos. Meas. Tech. 2018, 11, 5105–5123. [Google Scholar] [CrossRef] [Green Version]
- Evtushevsky, O.; Klekociuk, A.R.; Kravchenko, V.; Milinevsky, G.; Grytsai, A. The influence of large amplitude planetary waves on the Antarctic ozone hole of austral spring 2017. J. South. Hemisph. Earth Syst. Sci. 2019, 69, 57–64. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Kumar, P.; Nair, P.J.; Chakraborty, A. Accuracy of satellite total column ozone measurements in polar vortex conditions: Comparison with ground-based observations in 1979–2013. Remote Sens. Environ. 2018, 209, 648–659. [Google Scholar] [CrossRef]
- Bian, L.; Lin, Z.; Zhang, D.; Zheng, X.; Lu, L. Validation of total ozone data between satellite and ground-based measurements at Zhongshan and Syowa stations in Antarctica. Adv. Polar Sci. 2013, 23, 196–203. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Lefèvre, F.; Pommereau, J.-P.; Roscoe, H.K.; Goutail, F.; Pazmiño, A.; Shanklin, J.D. Antarctic ozone loss in 1979–2010: First sign of ozone recovery. Atmos. Chem. Phys. 2013, 13, 1625–1635. [Google Scholar] [CrossRef] [Green Version]
- Kuttippurath, J.; Kumar, P.; Nair, P.J.; Pandey, P.C. Emergence of ozone recovery evidenced by reduction in the occurrence of Antarctic ozone loss saturation. NPJ Clim. Atmos. Sci. 2018, 1, 42. [Google Scholar] [CrossRef] [Green Version]
- Xiuji, Z.; Xiangdong, Z.; Longhua, L.; Song, G. Ground-Based Measurements of Column Abundance of Ozone and UV-B Radiation over Zhongshan Station, Antarctica in the 1993 “Ozone Hole”. 1995, Volume 6, pp. 1–11. Available online: http://journal.polar.org.cn/CN/abstract/article_9141.shtml (accessed on 5 February 2021).
- Muthama, N.J.; Scimia, U.; Siani, A.M.; Palmieri, S. To optimize Brewer zenith sky total ozone measurements at the Italian stations of Rome and Ispra. J. Geophys. Res. 1995, 100, 3017–3022. [Google Scholar] [CrossRef]
- Kerr, J.B.; Mcelroy, C.T. Measurements of ozone with the Brewer Spectrophotometer. In Quadrennial International Ozone Symposium; London, J., Ed.; The National Center for Atmospheric Research: Boulder, CO, USA, 1981; pp. 74–79. [Google Scholar]
- Fioletov, V.E.; Kerr, J.B.; McElroy, C.T.; Wardle, D.I.; Savastiouk, V.; Grajnar, T.S. The Brewer reference triad. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zheng, X.; Bian, L. Comparison of long-term total ozone observations from space- and ground-based methods at Zhongshan Station, Antarctica. Sci. China Earth Sci. 2017, 60, 2013–2024. [Google Scholar] [CrossRef]
- Bhartia, P.K.; Wellemeyer, C. TOMS-V8 total O3 algorithm. In OMI Algorithm Theoretical Basis Document II; Bhartia, P.K., Ed.; Ozone, O.M.I. Products; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2002; pp. 15–31. [Google Scholar]
- Levelt, P.F.; van den Oord, G.H.J.; Dobber, M.R.; Malkki, A.; Huib, V.; Johan, V.; Stammes, P.; Lundell, J.O.V.; Saari, H. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Bhartia, P.K. OMI/Aura Ozone O3. Total Column 1-Orbit L2 Swath 13 × 24 km V003; Goddard Earth Sciences Data and Information Services Center: Greenbelt, MD, USA, 2005. [Google Scholar] [CrossRef]
- Bhartia, P.K. OMI/Aura TOMS-Like Ozone, Aerosol Index, Cloud Radiance Fraction L3, 1 Day 1° × 1° V3; NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2012. [Google Scholar] [CrossRef]
- Ziemke, J.R.; Chandra, S.; Bhartia, P.K. “Cloud slicing”: A new technique to derive upper tropospheric ozone from satellite measurements. J. Geophys. Res. 2001, 106, 9853–9867. [Google Scholar] [CrossRef]
- Varotsos, C.; Cartalis, C.; Vlamakis, A.; Tzanis, C.; Keramitsoglou, I. The long-term coupling between column ozone and tropopause properties. J. Clim. 2004, 17, 3843–3854. [Google Scholar] [CrossRef]
- Romahn, F.; Pedergnana, M.; Loyola, D.; Apituley, A.; Sneep, M.; Veefkind, J.P. Sentinel-5 Precursor/TROPOMI Level 2 Product User Manual O3 Total Column, S5P-L2-DLR-PUM-400A. 2020. Available online: http://www.tropomi.eu/document/product-user-manual-total-ozone-column (accessed on 19 March 2021).
- Lerot, C.; Heue, H.-P.; Romahn, F.; Verhoelst, T.; Lambert, J.-C.; Loyola, D.; Veefkind, J.P.; Dehn, A.; Zehner, C.; Balis, D.; et al. S5P MPC Product Readme OFFL Total Ozone V.02.01.03. 2019. Available online: http://www.tropomi.eu/documents/prf (accessed on 31 March 2021).
- Copernicus Sentinel Data Processed by ESA, German Aerospace Center (DLR). Sentinel-5P TROPOMI Total Ozone Column 1-Orbit L2 7 km × 3.5 km, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2018. Available online: https://doi.org/10.5270/S5P-fqouvyz (accessed on 19 March 2021).
- Copernicus Sentinel Data Processed by ESA, German Aerospace Center (DLR). Sentinel-5P TROPOMI Total Ozone Column 1-Orbit L2 5.5 km × 3.5 km, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2019. Available online: https://doi.org/10.5270/S5P-fqouvyz (accessed on 19 March 2021).
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality, and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Flynn, L.E.; Seftor, C.J.; Larsen, J.C.; Xu, P. The Ozone Mapping and Profiler Suite. In Earth Science Satellite Remote Sensing; Qu, J.J., Gao, W., Kafatos, M., Murphy, R.E., Salomonson, V.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 1, pp. 279–296. [Google Scholar] [CrossRef]
- Jaross, G. Omps-NPP L2 NM Ozone (O3) Total Column Swath Orbital V2; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2017; Available online: https://doi.org/10.5067/0WF4HAAZ0VHK (accessed on 25 April 2020).
- Jaross, G. Omps-NPP, L3 NM Ozone (O3) Total Column 1.0 Deg Grid Daily V2. Goddard Earth Sciences Data and Information Services Center, Greenbelt, MD (GES DISC), 2017. Available online: https://doi.org/10.5067/7Y7KSA1QNQP8 (accessed on 25 April 2020).
- McPeters, R.D.; Bhartia, P.K.; Krueger, A.J.; Herman, J.R.; Schlesinger, B.M.; Wellemeyer, C.G.; Seftor, C.J.; Jaross, G.; Taylor, S.L.; Swissler, T.; et al. Nimbus−7 Total Ozone Mapping Spectrometer (TOMS) Data Product’s User’s Guide. NASA Ref. Publ. 1384. National Aeronautics and Space Administration: Washington, DC, USA, 1996; Available online: https://docserver.gesdisc.eosdis.nasa.gov/public/project/TOMS/NIMBUS7_USERGUIDE.PDF (accessed on 8 February 2021).
- Teixeira, J. AIRS/Aqua L2 Standard Physical Retrieval (AIRS-Only) V006; Goddard Earth Sciences data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2013. [Google Scholar] [CrossRef]
- Teixeira, J. AIRS/Aqua L3 Daily Standard Physical Retrieval (AIRS-Only) 1° × 1° V006; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2013. [Google Scholar] [CrossRef]
- Olsen, E.T.; Fetzer, E.; Hulley, G.; Kalmus, P.; Manning, E.; Wong, S. AIRS/AMSU/HSB Version 6 LEVEL 2 Product user Guide, Jet Propulsion Laboratory, Version 1.6. 2017. Available online: https://airs.jpl.nasa.gov/resources/guides (accessed on 8 February 2021).
- Klaes, K.D.; Cohen, M.; Buhler, Y.; Schlüssel, P.; Munro, R.; Luntama, J.-P.; von Engeln, A.; Clérigh, E.Ó.; Bonekamp, H.; Ackermann, J.; et al. An introduction to the EUMETSAT polar system. Bull. Am. Meteorol. Soc. 2007, 88, 1085–1096. [Google Scholar] [CrossRef]
- Valks, P.; Loyola, D.; Hao, N.; Hedelt, P.; Slijkhuis, S.; Grossi, M.; Begoin, M.; Gimeno Garcia, S.; Lutz, R. Algorithm Theoretical Basis Document for GOME-2 Total Column Products of Ozone, NO2, BrO, HCHO, SO2, H2O and Cloud Properties, DLR/GOME-2/ATBD/01. 2015. Available online: https://atmos.eoc.dlr.de/app/docs/DLR_GOME-2_ATBD.pdf (accessed on 19 March 2021).
- Valks, P.; Loyola, R.D.; Zimmer, W.; Kiemle, S.; Hao, N.; Hedelt, P.; Grossi, M.; Pedergnana, M. Product User Manual GOME-2 Total Columns of Ozone, NO2, BrO, HCHO, SO2, H2O. OClO and Cloud Properties (GDP 4.8 for ACSAFOTO and NTO). SAF, AC/DLR/PUM/01, 3/A|Rev, 2. 2017. Available online: https://earth.esa.int/documents/700255/1525725/DLR_GOME_PUM_2E.pdf/1158f391-3481-4f1a-b349-661af4ee6154 (accessed on 8 February 2021).
- Munro, R.; Lang, R.; Klaes, D.; Poli, G.; Retscher, C.; Lindstrot, R.; Huckle, R.; Lacan, A.; Grzegorski, M.; Holdak, A.; et al. The GOME-2 instrument on the metop series of satellites: Instrument design, calibration, and level 1 data processing—An overview. Atmos. Meas. Tech. 2016, 9, 1279–1301. [Google Scholar] [CrossRef] [Green Version]
- Corwin, R.R.; Rodenburgh, A. Temperature error in radiation thermometry caused by emissivity and reflectance measurement error. Appl. Opt. 1994, 33, 1950–1957. [Google Scholar] [CrossRef] [PubMed]
- Ahn, D.H.; Choi, T.; Kim, J.; Park, S.S.; Lee, Y.G.; Kim, S.-J.; Koo, J.-H. Southern Hemisphere mid- and high-latitudinal AOD, CO, NO2, and HCHO: Spatiotemporal patterns revealed by satellite observations. Prog. Earth Planet. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Ivy, D.J.; Kinnison, D.; Mills, M.J.; Neely, R.R.; Schmidt, A. Emergence of healing in the Antarctic ozone layer. Science 2016, 353, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, T.; Park, S.J.; Koo, J.H. O3 Observation Data Using BREWER at King Sejong Station in 1998–2020; Korea Polar Data Center (KPDC): Yeonsu-gu, Incheon, Korea, 2020. [Google Scholar] [CrossRef]
- Choi, T.; Koo, J.H. O3 Observation Data Using BREWER at Jang Bogo Station in 2016–2020; Korea Polar Data Center (KPDC): Yeonsu-gu, Incheon, Korea, 2020. [Google Scholar] [CrossRef]
Station | Longitude | Latitude | Instrument Model | Instrument Number | Data Representative |
---|---|---|---|---|---|
King Sejong | 58.47°W | 62.13°S | MK IV | 122 | Both DS and ZS |
Jang Bogo | 164.23°E | 74.62°S | MK III | 148 | Both DS and ZS |
Zhongshan | 76.22°E | 69.22°S | MK IV (~2010) MK III (2010~) | 74 193 | Either DS or ZS Either DS or ZS |
Station | Measure Type | Product Level | OMI | TROPOMI | OMPS | AIRS | GOME-2 |
---|---|---|---|---|---|---|---|
King Sejong | DS | 2 | 6.5 (10.9) | 3.4 (8.9) | 1.0 (13.0) | 10.5 (19.7) | 10.1 (13.7) |
ZS | 2 | 5.3 (11.4) | −0.7 (8.9) | −2.4 (12.2) | 8.8 (20.1) | 6.1 (12.3) | |
DS | 3 | 7.8 (13.5) | 6.8 (13.1) | 11.2 (23.0) | 9.7 (13.6) | ||
ZS | 3 | 5.5 (13.1) | 3.2 (11.4) | 9.1 (23.8) | 5.8 (12.6) | ||
Jang Bogo | DS | 2 | 2.9 (6.8) | −0.1 (6.4) | −8.8 (15.6) | −11.7 (21.0) | 2.8 (10.3) |
ZS | 2 | 2.0 (6.0) | 0.4 (5.9) | −7.0 (13.4) | −8.8 (19.1) | 3.8 (9.2) | |
DS | 3 | 0.3 (6.7) | 2.7 (6.5) | −12.5 (18.4) | 1.0 (9.7) | ||
ZS | 3 | -0.1 (6.6) | 2.5 (6.6) | −9.4 (16.8) | 1.5 (8.1) | ||
Zhongshan | DS | 2 | 1.2 (6.1) | 8.6 (9.5) | −8.5 (15.9) | −10.2 (21.7) | 3.3 (10.7) |
ZS | 2 | −7.7 (14.5) | 8.0 (9.5) | −24.0 (25.4) | −16.0 (30.9) | −8.2 (14.3) | |
DS | 3 | 0.3 (5.9) | 3.0 (6.9) | −12.2 (19.4) | 3.4 (7.95) | ||
ZS | 3 | −9.5 (16.1) | −14.2 (17.4) | −22.3 (31.1) | 1.0 (6.9) |
Station | Measure Type | Product Level | OMI | TROPOMI | OMPS | AIRS | GOME-2 |
---|---|---|---|---|---|---|---|
King Sejong | DS | 2 | 15.4 | 12.5 | 17.6 | 26.2 | 17.4 |
ZS | 2 | 15.3 | 11.6 | 16.5 | 26.8 | 16.4 | |
DS | 3 | 18.4 | 17.7 | 33.8 | 21.6 | ||
ZS | 3 | 17.4 | 14.5 | 32.0 | 21.5 | ||
Jang Bogo | DS | 2 | 11.1 | 9.0 | 23.7 | 29.7 | 15.1 |
ZS | 2 | 8.0 | 7.5 | 25.6 | 29.7 | 20.1 | |
DS | 3 | 13.0 | 12.2 | 27.4 | 14.8 | ||
ZS | 3 | 19.8 | 19.4 | 29.2 | 21.0 | ||
Zhongshan | DS | 2 | 10.0 | 13.3 | 20.9 | 30.7 | 14.6 |
ZS | 2 | 18.1 | 12.0 | 30.1 | 44.3 | 18.1 | |
DS | 3 | 9.6 | 10.3 | 30.6 | 11.3 | ||
ZS | 3 | 19.8 | 22.4 | 46.6 | 8.6 |
Station | Measure Type | Product Level | OMI | TROPOMI | OMPS | AIRS | GOME-2 |
---|---|---|---|---|---|---|---|
King Sejong | DS | 2 | 466 | 159 | 375 | 785 | 629 |
ZS | 2 | 1107 | 316 | 766 | 1690 | 1206 | |
DS | 3 | 696 | 373 | 865 | 486 | ||
ZS | 3 | 1599 | 758 | 2002 | 909 | ||
Jang Bogo | DS | 2 | 164 | 195 | 345 | 349 | 332 |
ZS | 2 | 246 | 199 | 449 | 448 | 432 | |
DS | 3 | 327 | 327 | 343 | 276 | ||
ZS | 3 | 428 | 428 | 442 | 362 | ||
Zhongshan | DS | 2 | 1376 | 165 | 1075 | 1940 | 1159 |
ZS | 2 | 150 | 8 | 71 | 213 | 70 | |
DS | 3 | 1678 | 1072 | 2064 | 893 | ||
ZS | 3 | 184 | 71 | 259 | 39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Park, S.-J.; Lee, H.; Ahn, D.H.; Jung, Y.; Choi, T.; Lee, B.Y.; Kim, S.-J.; Koo, J.-H. Evaluation of Total Ozone Column from Multiple Satellite Measurements in the Antarctic Using the Brewer Spectrophotometer. Remote Sens. 2021, 13, 1594. https://doi.org/10.3390/rs13081594
Kim S, Park S-J, Lee H, Ahn DH, Jung Y, Choi T, Lee BY, Kim S-J, Koo J-H. Evaluation of Total Ozone Column from Multiple Satellite Measurements in the Antarctic Using the Brewer Spectrophotometer. Remote Sensing. 2021; 13(8):1594. https://doi.org/10.3390/rs13081594
Chicago/Turabian StyleKim, Songkang, Sang-Jong Park, Hana Lee, Dha Hyun Ahn, Yeonjin Jung, Taejin Choi, Bang Yong Lee, Seong-Joong Kim, and Ja-Ho Koo. 2021. "Evaluation of Total Ozone Column from Multiple Satellite Measurements in the Antarctic Using the Brewer Spectrophotometer" Remote Sensing 13, no. 8: 1594. https://doi.org/10.3390/rs13081594
APA StyleKim, S., Park, S. -J., Lee, H., Ahn, D. H., Jung, Y., Choi, T., Lee, B. Y., Kim, S. -J., & Koo, J. -H. (2021). Evaluation of Total Ozone Column from Multiple Satellite Measurements in the Antarctic Using the Brewer Spectrophotometer. Remote Sensing, 13(8), 1594. https://doi.org/10.3390/rs13081594