Satellite Sea Surface Temperature Product Comparison for the Southern African Marine Region
Abstract
:1. Introduction
2. Materials and Methods
Sub-Division of the Southern African Marine Region
3. Results
3.1. Spatial Variability between L4 Products
3.2. Seasonal Bias between L4 Products
3.3. Influence of Missing Data within IR Retrivals
3.4. Timeseries Analysis at Selected High-Variance Locations
3.5. Influence of SST Gradient
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dong, C.; Nencioli, F.; Liu, Y.; McWilliams, J.C. An Automated Approach to Detect Oceanic Eddies from Satellite Remotely Sensed Sea Surface Temperature Data. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1055–1059. [Google Scholar] [CrossRef]
- Yu, L.; Weller, R.A. Objectively Analyzed Air-Sea Heat Fluxes for the Global Ice- Free Oceans (1981–2005). Bull. Am. Meteorol. Soc. 2007, 88, 527–539. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R. The Role of Satellite Remote Sensing in Climate Change Studies. Nat. Clim. Chang. 2013, 3, 875–883. [Google Scholar] [CrossRef]
- Ciani, D.; Rio, M.H.; Menna, M.; Santoleri, R. A Synergetic Approach for the Space-Based Sea Surface Currents Retrieval in the Mediterranean Sea. Remote Sens. 2019, 11, 1285. [Google Scholar] [CrossRef]
- Rio, M.H.; Santoleri, R.; Bourdalle-Badie, R.; Griffa, A.; Piterbarg, L.; Taburet, G. Improving the Altimeter-Derived Surface Currents Using High-Resolution Sea Surface Temperature Data: A Feasability Study Based on Model Outputs. J. Atmos. Ocean. Technol. 2016, 33, 2769–2784. [Google Scholar] [CrossRef]
- Donlon, C.; Robinson, I.; Casey, K.S.; Vazquez-Cuervo, J.; Armstrong, E.; Arino, O.; Gentemann, C.; May, D.; LeBorgne, P.; Piolle, J.; et al. The Global Ocean Data Assimilation Experiment High-Resolution Sea Surface Temperature Pilot Project. Bull. Am. Meteorol. Soc. 2007, 88, 1197–1213. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Karl, D.M.; Boyd, P.W.; Cheung, W.W.L.; Lluch-Cota, S.E.; Nojiri, Y.; Schmidt, D.N.; Zavialov, P.O. Ocean Systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., YEstrada, O., Genova, R.C., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Wong, P.P.; Losada, I.J.; Gattuso, J.-P.; Hinkel, J.; Khattabi, A.; McInnes, K.L.; Saito, Y.; Sallenger, A. Coastal Systems and Low-Lying Areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Chang; Cambridge University: Cambridge, UK, 2014. [Google Scholar]
- Schlegel, R.W.; Oliver, E.C.J.; Wernberg, T.; Smit, A.J. Nearshore and Offshore Co-Occurrence of Marine Heatwaves and Cold-Spells. Prog. Oceanogr. 2017, 151, 189–205. [Google Scholar] [CrossRef]
- Schlegel, R.W.; Oliver, E.C.J.; Perkins-Kirkpatrick, S.; Kruger, A.; Smit, A.J. Predominant Atmospheric and Oceanic Patterns during Coastal Marine Heatwaves. Front. Mar. Sci. 2017, 4, 323. [Google Scholar] [CrossRef]
- Florenchie, P.; Lutjeharms, J.R.E.; Reason, C.J.C.; Masson, S.; Rouault, M. The Source of Benguela Niños in the South Atlantic Ocean. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Rouault, M.; Pohl, B.; Penven, P. Coastal Oceanic Climate Change and Variability from 1982 to 2009 around South Africa. Afr. J. Mar. Sci. 2010, 32, 237–246. [Google Scholar] [CrossRef]
- Mills, K.E.; Pershing, A.J.; Brown, C.J.; Chen, Y.; Chiang, F.S.; Holland, D.S.; Lehuta, S.; Nye, J.A.; Sun, J.C.; Thomas, A.C.; et al. Fisheries Management in a Changing Climate: Lessons from the 2012 Ocean Heat Wave in the Northwest Atlantic. Oceanography 2013, 26, 191–195. [Google Scholar] [CrossRef]
- Cavole, L.M.; Demko, A.M.; Diner, R.E.; Giddings, A.; Koester, I.; Pagniello, C.M.L.S.; Paulsen, M.L.; Ramirez-Valdez, A.; Schwenck, S.M.; Yen, N.K.; et al. Biological Impacts of the 2013–2015 Warm-Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future. Oceanography 2016, 29, 273–285. [Google Scholar] [CrossRef]
- Boyer, D.C.; Boyer, H.J.; Fossen, I.; Kreiner, A. Changes in Abundance of the Northern Benguela Sardine Stock during the Decade 1990–2000, with Comments on the Relative Importance of Fishing and the Environmment. S. Afr. J. Mar. Sci. 2001, 23, 67–84. [Google Scholar] [CrossRef]
- Rouault, M.; Florenchie, P.; Fauchereau, N.; Reason, C.J.C. South East Tropical Atlantic Warm Events and Southern African Rainfall. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Roy, C.; Van Der Lingen, C.D.; Coetzee, J.C.; Lutjeharms, J.R.E. Abrupt Environmental Shift Associated with Changes in the Distribution of Cape Anchovy Engraulis Encrasicolus Spawners in the Southern Benguela. Afr. J. Mar. Sci. 2007, 29, 309–319. [Google Scholar] [CrossRef]
- Wentz, F.J.; Gentemann, C.; Smith, D.; Chelton, D. Satellite Measurements of Sea Surface Temperature through Clouds. Science 2000, 288, 847–850. [Google Scholar] [CrossRef]
- Chelton, D.B.; Wentz, F.J. Global Microwave Satellite Observations of Sea Surface Temperature for Numerical Weather Prediction and Climate Research. Bull. Am. Meteorol. Soc. 2005, 86, 1097–1115. [Google Scholar] [CrossRef]
- Robinson, I.S. Measuring the Oceans from Space: The Principles and Methods of Satellite Oceanography; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Minnett, P.J.; Alvera-Azcárate, A.; Chin, T.M.; Corlett, G.K.; Gentemann, C.L.; Karagali, I.; Li, X.; Marsouin, A.; Marullo, S.; Maturi, E.; et al. Half a Century of Satellite Remote Sensing of Sea-Surface Temperature. Remote Sens. Environ. 2019, 233, 111366. [Google Scholar] [CrossRef]
- O’Carroll, A.G.; Armstrong, E.M.; Beggs, H.; Bouali, M.; Casey, K.S.; Corlett, G.K.; Dash, P.; Donlon, C.; Gentemann, C.L.; Høyer, J.L.; et al. Observational Needs of Sea Surface Temperature. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Martin, M.; Dash, P.; Ignatov, A.; Banzon, V.; Beggs, H.; Brasnett, B.; Cayula, J.F.; Cummings, J.; Donlon, C.; Gentemann, C.; et al. Group for High Resolution Sea Surface Temperature (GHRSST) Analysis Fields Inter-Comparisons. Part 1: A GHRSST Multi-Product Ensemble (GMPE). Deep Res. Part II Top. Stud. Oceanogr. 2012, 77–80, 21–30. [Google Scholar] [CrossRef]
- Dash, P.; Ignatov, A.; Martin, M.; Donlon, C.; Brasnett, B.; Reynolds, R.W.; Banzon, V.; Beggs, H.; Cayula, J.F.; Chao, Y.; et al. Group for High Resolution Sea Surface Temperature (GHRSST) Analysis Fields Inter-Comparisons-Part 2: Near Real Time Web-Based Level 4 SST Quality Monitor (L4-SQUAM). Deep Res. Part II Top. Stud. Oceanogr. 2012, 77–80, 31–43. [Google Scholar] [CrossRef]
- Krug, M.; Swart, S.; Gula, J. Submesoscale Cyclones in the Agulhas Current. Geophys. Res. Lett. 2017, 44, 346–354. [Google Scholar] [CrossRef]
- Rouault, M. Bi-Annual Intrusion of Tropical Water in the Northern Benguela Upwelling. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Chelton, D.B. Comparisons of Daily Sea Surface Temperature Analyses for 2007–08. J. Clim. 2010, 23, 3545–3562. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, J.; Li, Y. Assessment and Inter-Comparison of Five High-Resolution Sea Surface Temperature Products in the Shelf and Coastal Seas around China. Cont. Shelf Res. 2008, 28, 1286–1293. [Google Scholar] [CrossRef]
- Meneghesso, C.; Seabra, R.; Broitman, B.R.; Wethey, D.S.; Burrows, M.T.; Chan, B.K.K.; Guy-Haim, T.; Ribeiro, P.A.; Rilov, G.; Santos, A.M.; et al. Remotely-Sensed L4 SST Underestimates the Thermal Fingerprint of Coastal Upwelling. Remote Sens. Environ. 2020, 237, 111588. [Google Scholar] [CrossRef]
- Dufois, F.; Penven, P.; Peter Whittle, C.; Veitch, J. On the Warm Nearshore Bias in Pathfinder Monthly SST Products over Eastern Boundary Upwelling Systems. Ocean Model. 2012, 47, 113–118. [Google Scholar] [CrossRef]
- Dufois, F.; Rouault, M. Sea Surface Temperature in False Bay (South Africa): Towards a Better Understanding of Its Seasonal and Inter-Annual Variability. Cont. Shelf Res. 2012, 43, 24–35. [Google Scholar] [CrossRef]
- Smit, A.J.; Roberts, M.; Anderson, R.J.; Dufois, F.; Dudley, S.F.J.; Bornman, T.G.; Olbers, J.; Bolton, J.J. A Coastal Seawater Temperature Dataset for Biogeographical Studies: Large Biases between in Situ and Remotely-Sensed Data Sets around the Coast of South Africa. PLoS ONE 2013, 8, e81944. [Google Scholar] [CrossRef]
- Wang, Y.; Castelao, R.M.; Yuan, Y. Seasonal Variability of Alongshore Winds and Sea Surface Temperature Fronts in Eastern Boundary Current Systems. J. Geophys. Res. C Ocean. 2015, 120, 2385–2400. [Google Scholar] [CrossRef]
- Hutchings, L.; van der Lingen, C.D.; Shannon, L.J.; Crawford, R.J.M.; Verheye, H.M.S.; Bartholomae, C.H.; van der Plas, A.K.; Louw, D.; Kreiner, A.; Ostrowski, M.; et al. The Benguela Current: An Ecosystem of Four Components. Prog. Oceanogr. 2009, 83, 15–32. [Google Scholar] [CrossRef]
- Lamont, T.; García-Reyes, M.; Bograd, S.J.; van der Lingen, C.D.; Sydeman, W.J. Upwelling Indices for Comparative Ecosystem Studies: Variability in the Benguela Upwelling System. J. Mar. Syst. 2018, 188, 3–16. [Google Scholar] [CrossRef]
- Shannon, L.V.; Nelson, G. The Benguela: Large Scale Features and Processes and System Variability. In The South Atlantic: Present and Past Circulation; Springer: Berlin/Heidelberg, Germany, 1996; pp. 163–210. [Google Scholar] [CrossRef]
- Woodson, C.B.; McManus, M.A.; Tyburczy, J.A.; Barth, J.A.; Washburn, L.; Caselle, J.E.; Carr, M.H.; Malone, D.P.; Raimondi, P.T.; Menge, B.A.; et al. Coastal Fronts Set Recruitment and Connectivity Patterns across Multiple Taxa. Limnol. Oceanogr. 2012, 57, 582–596. [Google Scholar] [CrossRef]
- Belkin, I.M.; Cornillon, P.C.; Sherman, K. Fronts in Large Marine Ecosystems. Prog. Oceanogr. 2009, 81, 223–236. [Google Scholar] [CrossRef]
- Lutjeharms, J.R.E.; Meeuwis, J.M. The Extent and Variability of South-East Atlantic Upwelling. S. Afr. J. Mar. Sci. 1987, 5, 51–62. [Google Scholar] [CrossRef]
- Meeuwis, J.M.; Lutjeharms, J.R. Surface Thermal Characteristics of the Angola-Benguela Front. S. Afr. J. Mar. Sci. 1990, 9, 261–279. [Google Scholar] [CrossRef]
- Boebel, O.; Lutjeharms, J.; Schmid, C.; Zenk, W.; Rossby, T.; Barron, C. The Cape Cauldron: A Regime of Turbulent Inter-Ocean Exchange. Deep Res. Part II Top. Stud. Oceanogr. 2003, 50, 57–86. [Google Scholar] [CrossRef]
- Krug, M.; Schilperoort, D.; Collard, F.; Hansen, M.W.; Rouault, M. Signature of the Agulhas Current in High Resolution Satellite Derived Wind Fields. Remote Sens. Environ. 2018, 217, 340–351. [Google Scholar] [CrossRef]
- Rouault, M.J.; Penven, P. New Perspectives on Natal Pulses from Satellite Observations. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef]
- Rouault, M.; Lee-Thorp, A.M.; Lutjeharms, J.R.E. The Atmospheric Boundary Layer above the Agulhas Current during Alongcurrent Winds. J. Phys. Oceanogr. 2000, 30, 40–50. [Google Scholar] [CrossRef]
- Tedesco, P.; Gula, J.; Ménesguen, C.; Penven, P.; Krug, M. Generation of Submesoscale Frontal Eddies in the Agulhas Current. J. Geophys. Res. Ocean. 2019, 124, 7606–7625. [Google Scholar] [CrossRef]
- Han, G.; Dong, C.; Li, J.; Yang, J.; Wang, Q.; Liu, Y.; Sommeria, J. SST Anomalies in the Mozambique Channel Using Remote Sensing and Numerical Modeling Data. Remote Sens. 2019, 11, 1112. [Google Scholar] [CrossRef]
- Swart, N.C.; Lutjeharms, J.R.E.; Ridderinkhof, H.; De Ruijter, W.P.M. Observed Characteristics of Mozambique Channel Eddies. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef]
- Collins, C.; Hermes, J.C.; Reason, C.J.C. Mesoscale Activity in the Comoros Basin from Satellite Altimetry and a High-Resolution Ocean Circulation Model. J. Geophys. Res. Ocean. 2014, 119, 4745–4760. [Google Scholar] [CrossRef]
- Ridderinkhof, W.; Le Bars, D.; Von Der Heydt, A.S.; De Ruijter, W.P.M. Dipoles of the South East Madagascar Current. Geophys. Res. Lett. 2013, 40, 558–562. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Donlon, C.J.; Stuart-Menteth, A.; Wentz, F.J. Diurnal Signals in Satellite Sea Surface Temperature Measurements. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Chao, Y.; Li, Z.; Farrara, J.D.; Hung, P. Blending Sea Surface Temperatures from Multiple Satellites and in Situ Observations for Coastal Oceans. J. Atmos. Ocean. Technol. 2009, 26, 1415–1426. [Google Scholar] [CrossRef]
- Chin, T.M.; Vazquez-Cuervo, J.; Armstrong, E.M. A Multi-Scale High-Resolution Analysis of Global Sea Surface Temperature. Remote Sens. Environ. 2017, 200, 154–169. [Google Scholar] [CrossRef]
- Available online: Https://Podaac.Jpl.Nasa.Gov/Dataset/AVHRR_OI-NCEI-L4-GLOB-v2.0 (accessed on 22 September 2019).
- Available online: Https://Podaac.Jpl.Nasa.Gov/Dataset/ABOM-L4LRfnd-GLOB-GAMSSA_28km (accessed on 22 May 2019).
- Available online: Https://Podaac.Jpl.Nasa.Gov/Dataset/MW_OI-REMSS-L4-GLOB-v5.0 (accessed on 6 June 2019).
- Available online: Https://Resources.Marine.Copernicus.Eu/?Option=com_csw&view=details&product_id=SST_GLO_SST_L4_NRT_OBSERVATIONS_010_005 (accessed on 23 May 2019).
- Available online: Https://Ds.Data.Jma.Go.Jp/Gmd/Goos/Data/Rrtdb/Jma-pro/Mgd_sst_glb_D.Html (accessed on 21 May 2019).
- Available online: Https://Podaac.Jpl.Nasa.Gov/Dataset/K10_SST-NAVO-L4-GLOB-V01 (accessed on 11 July 2019).
- Available online: Https://Podaac.Jpl.Nasa.Gov/Dataset/CMC0.2deg-CMC-L4-GLOB-v2.0 (accessed on 24 June 2019).
- Available online: Http://Products.Cersat.Fr/Details/?Id=CER-SST-GLO-1D-010-ODY-MGD (accessed on 22 July 2019).
- Available online: Https://Podaac.Jpl.Nasa.Gov/Dataset/MW_IR_OI-REMSS-L4-GLOB-v5.0 (accessed on 20 June 2019).
- Available online: Https://Podaac.Jpl.Nasa.Gov/Dataset/UKMO-L4HRfnd-GLOB-OSTIA (accessed on 16 September 2019).
- Available online: Https://Podaac.Jpl.Nasa.Gov/Dataset/Geo_Polar_Blended-OSPO-L4-GLOB-v1.0 (accessed on 11 September 2019).
- Available online: Https://Podaac.Jpl.Nasa.Gov/Dataset/DMI_OI-DMI-L4-GLOB-v1.0 (accessed on 20 August 2019).
- Available online: Http://Www.Ifremer.Fr/Opendap/Cerdap1/Ghrsst/L4/Saf/Odyssea-Nrt/Data/ (accessed on 20 August 2019).
- Available online: Https://Podaac.Jpl.Nasa.Gov/Dataset/JPL_OUROCEAN-L4UHfnd-GLOB-G1SST (accessed on 8 July 2019).
- Available online: Https://Podaac.Jpl.Nasa.Gov/Dataset/MUR-JPL-L4-GLOB-v4.1 (accessed on 7 October 2019).
- Available online: Https://Podaac.Jpl.Nasa.Gov/Dataset/MODIS_TERRA_L3_SST_THERMAL_DAILY_4KM_DAYTIME_V2014.0 (accessed on 11 July 2019).
- Available online: Https://Podaac.Jpl.Nasa.Gov/Dataset/MODIS_AQUA_L3_SST_THERMAL_DAILY_4KM_DAYTIME_V2014.0 (accessed on 22 June 2019).
- Available online: Https://Oceandata.Sci.Gsfc.Nasa.Gov/VIIRS-SNPP/Mapped/Daily/4km/Sst/ (accessed on 3 September 2019).
- Available online: Https://Data.Nodc.Noaa.Gov/Cgi-Bin/Iso?Id=gov.Noaa.Nodc:AVHRR_Pathfinder-NCEI-L3C-v5.3 (accessed on 17 September 2019).
- Available online: Https://Podaac.Jpl.Nasa.Gov/Dataset/SEVIRI_SST-OSISAF-L3C-v1.0 (accessed on 22 October 2019).
- Kirkman, S.P.; Blamey, L.; Lamont, T.; Field, J.G.; Bianchi, G.; Huggett, J.A.; Hutchings, L.; Jackson-Veitch, J.; Jarre, A.; Lett, C.; et al. Spatial Characterisation of the Benguela Ecosystem for Ecosystem-Based Management. Afr. J. Mar. Sci. 2016, 38, 7–22. [Google Scholar] [CrossRef]
- Vazquez-Cuervo, J.; Gomez-Valdes, J.; Bouali, M.; Miranda, L.E.; Van der Stocken, T.; Tang, W.; Gentemann, C. Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast. Remote Sens. 2019, 11, 1964. [Google Scholar] [CrossRef]
- Olivier, J.; Stockton, P.L. The Influence of Upwelling Extent upon Fog Incidence at Lüderitz, Southern Africa. Int. J. Climatol. 1989, 9, 69–75. [Google Scholar] [CrossRef]
- Olivier, J. Fog Harvesting: An Alternative Source of Water Supply on the West Coast of South Africa. GeoJournal 2004, 61, 203–214. [Google Scholar] [CrossRef]
- Lekouara, M. Exploring Frontogenesis Processes in New Satellite Sea Surface Temperature Data Sets; University of Southampton: Southampton, UK, 2013. [Google Scholar]
- Kilpatrick, K.A.; Podestá, G.P.; Evans, R. Overview of the NOAA/NASA Advanced Very High Resolution Radiometer Pathfinder Algorithm for Sea Surface Temperature and Associated Matchup Database. J. Geophys. Res. Ocean. 2001, 106, 9179–9197. [Google Scholar] [CrossRef]
- Derrien, M.; Farki, B.; Harang, L.; LeGléau, H.; Noyalet, A.; Pochic, D.; Sairouni, A. Automatic Cloud Detection Applied to NOAA-11 /AVHRR Imagery. Remote Sens. Environ. 1993, 46, 246–267. [Google Scholar] [CrossRef]
- Belkin, I.M.; O’Reilly, J.E. An Algorithm for Oceanic Front Detection in Chlorophyll and SST Satellite Imagery. J. Mar. Syst. 2009, 78, 319–326. [Google Scholar] [CrossRef]
- García-Morales, R.; López-Martínez, J.; Valdez-Holguin, J.E.; Herrera-Cervantes, H.; Espinosa-Chaurand, L.D. Environmental Variability and Oceanographic Dynamics of the Central and Southern Coastal Zone of Sonora in the Gulf Of California. Remote Sens. 2017, 9, 925. [Google Scholar] [CrossRef]
- Goschen, W.S.; Schumann, E.H.; Bernard, K.S.; Bailey, S.E.; Deyzel, S.H.P. Upwelling and Ocean Structures off Algoa Bay and the South-East Coast of South Africa. Afr. J. Mar. Sci. 2012, 34, 525–536. [Google Scholar] [CrossRef]
- Leber, G.M.; Beal, L.M.; Elipot, S. Wind and Current Forcing Combine to Drive Strong Upwelling in the Agulhas Current. J. Phys. Oceanogr. 2017, 47, 123–134. [Google Scholar] [CrossRef]
Product | Resolution | Level | Sensors | Reference/DOI |
---|---|---|---|---|
AVHRR_OISST | 0.25 | L4 | 1, 13 | [54] |
GAMSSA_SST | 0.25 | L4 | 2, 6, 13 | [55] |
REMSS MW_OI_ SST | 0.25 | L4 | 2, 3, 4, 5, 7 | [56] |
CMEMS_GMPE | 0.25 | L4 | Ensemble of products | [57] |
JMA MGDSST | 0.25 | L4 | 3, 5, 13 | [58] |
NAVO_K10 | 0.10 | L4 | 1, 3, 8 | [59] |
CMC_SST | 0.10 | L4 | 1, 2, 13 | [60] |
ODYSSEA MUR | 0.10 | L4 | 1, 2, 4, 6, 8, 9 | [61] |
REMSS_IR_MW_OI | 0.09 | L4 | 2, 3, 4, 5, 7, 11, 10 | [62] |
OSTIA_NRT | 0.05 | L4 | 1, 2, 3, 4, 6, 8, 9, 10, 13 | [63] |
Geo-Polar OSPO | 0.05 | L4 | 1, 8, 10, 12, 13 | [64] |
DMI_SST | 0.05 | L4 | 1, 2, 9, 10, 11 | [65] |
ODYSSEA_AGULHAS | 0.02 | L4 | 1, 2, 3, 4, 6, 7, 9, 10 | [66] |
G1SST | 0.01 | L4 | 1, 6, 8, 9, 11, 13 | [67] |
JPL_MUR | 0.01 | L4 | 1, 2, 3, 5, 11, 13 | [68] |
Product | Resolution | Level | Sensors | Reference/DOI |
---|---|---|---|---|
MODIS_TERRA (DAY/NIGHT) v2014.0 | 0.04 | L3 | MODIS on board TERRA platform | [69] |
MODIS_AQUA (DAY/NIGHT) v2014.0 | 0.04 | L3 | MODIS on board AQUA platform | [70] |
VIIRS (DAY/NIGHT) | 0.04 | L3 | VIIRS on board S-NPP platform | [71] |
PATHFINDER (DAY/NIGHT) PFV53 | 0.04 | L3 | AVHRR | [72] |
SEVIRI | 0.05 | L3 | Meteosat-11/SEVIRI | [73] |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carr, M.; Lamont, T.; Krug, M. Satellite Sea Surface Temperature Product Comparison for the Southern African Marine Region. Remote Sens. 2021, 13, 1244. https://doi.org/10.3390/rs13071244
Carr M, Lamont T, Krug M. Satellite Sea Surface Temperature Product Comparison for the Southern African Marine Region. Remote Sensing. 2021; 13(7):1244. https://doi.org/10.3390/rs13071244
Chicago/Turabian StyleCarr, Matthew, Tarron Lamont, and Marjolaine Krug. 2021. "Satellite Sea Surface Temperature Product Comparison for the Southern African Marine Region" Remote Sensing 13, no. 7: 1244. https://doi.org/10.3390/rs13071244
APA StyleCarr, M., Lamont, T., & Krug, M. (2021). Satellite Sea Surface Temperature Product Comparison for the Southern African Marine Region. Remote Sensing, 13(7), 1244. https://doi.org/10.3390/rs13071244