Arctic Tundra Land Cover Classification on the Beaufort Coast Using the Kennaugh Element Framework on Dual-Polarimetric TerraSAR-X Imagery
Abstract
:1. Introduction
1.1. The Impact of Climate Change on Arctic Tundra Landscapes
1.2. State of the Art for Arctic Tundra Landscape Monitoring with Synthetic Aperture Radar Data
1.3. The Kennaugh Element Framework as a Potential Tool to Monitor the Artic Tundra Landscape Scatter Mechanisms
1.4. Aim and Objectives
2. Materials
2.1. Area Description
2.2. Remote Sensing Data
2.3. Climate Data
2.4. In Situ and Reference Data
3. Methods
3.1. Pre-Processing of Polarimetric SAR Data
3.1.1. Processing Steps of the Traditional SAR Workflow
3.1.2. Processing Steps of the Kennaugh Element Framework
3.1.3. Theoretical Background of the Kennaugh Element Framework
3.2. Preparation of the Reference Dataset
3.2.1. Pre-Processing of the Optical Data
3.2.2. Image Segmentation
3.3. Classification
3.3.1. Land Cover Classification System
3.3.2. Preparation of the Predictor Variables
3.3.3. Random Forest Classifier
4. Results
4.1. Characterization of Land Cover Classes by In Situ Observations
4.2. Temporal Analysis of Backscatter Statistics
4.3. Multi-Temporal Land Cover Classification
5. Discussion
5.1. Comparison between the Sigma Nought and the Kennaugh Element Classification
5.2. Variable Importance of the Random Forest Classifier
5.3. Seasonal Backscatter Mechanisms at X-Band for Arctic Tundra Landscapes with Respect to Previous Findings
5.4. Comparison between the Kennaugh Element Classification and Other Arctic Tundra Land Cover Studies
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALD | Active Layer Depth |
CR | Cross-polarized Ratio |
CWCS | Canadian Wetland Classification System |
KE | Kennaugh Element |
KEF | Kennaugh Element Framework |
LCC | Land Cover Classification |
MDA | Mean Decrease Accuracy |
MSML | Multi-Looking Multi-Scale |
NEBN | Noise Equivalent Beta Nought |
NESZ | Noise Equivalent Sigma Nought |
OA | Overall Accuracy |
OOB | Out-Of-Bag |
PA | Producer’s Accuracy |
PFT | Plant Functional Types |
PolSAR | Polarimetric SAR |
RF | Random Forest |
SAR | Synthetic Aperture Radar |
SNR | Signal-to-Noise Ratio |
TDX | TanDEM-X |
TSX | TerraSAR-X |
UA | User’s Accuracy |
VMC | Volumetric Moisture Content |
WV-3 | Worldview-3 |
References
- Surface Air Temperature. Available online: https://www.arctic.noaa.gov/Report-Card/Report-Card-2018/ArtMID/7878/ArticleID/783/Surface-Air-Temperature (accessed on 2 May 2020).
- Core Writing Team; IPCC; Pachauri, B.K.; Meyer, L.A. (Eds.) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Hugelius, G. Spatial upscaling using thematic maps: An analysis of uncertainties in permafrost soil carbon estimates: Errors in estimates of soil carbon. Glob. Biogeochem. Cycles 2012, 26. [Google Scholar] [CrossRef]
- Stettner, S.; Lantuit, H.; Heim, B.; Eppler, J.; Roth, A.; Bartsch, A.; Rabus, B. TerraSAR-X time series fill a gap in spaceborne snowmelt monitoring of small Arctic catchments a case study on Qikiqtaruk (Herschel Island), Canada. Remote Sens. 2018, 10, 1155. [Google Scholar] [CrossRef] [Green Version]
- Duguay, Y.; Bernier, M.; Lévesque, E.; Tremblay, B. Potential of C and X band SAR for shrub growth monitoring in sub-Arctic environments. Remote Sens. 2015, 7, 9410–9430. [Google Scholar] [CrossRef] [Green Version]
- Minayeva, T.; Sirin, A.; Kershaw, P.; Bragg, O. Arctic Peatlands. In The Wetland Book; Finlayson, C.M., Milton, G.R., Prentice, R.C., Davidson, N.C., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–15. [Google Scholar] [CrossRef]
- Lara, M.J.; Nitze, I.; Grosse, G.; Martin, P.; McGuire, A.D. Reduced arctic tundra productivity linked with landform and climate change interactions. Sci. Rep. 2018, 8, 2345. [Google Scholar] [CrossRef] [PubMed]
- Myers-Smith, I.H.; Kerby, J.T.; Phoenix, G.K.; Bjerke, J.W.; Epstein, H.E.; Assmann, J.J.; John, C.; Andreu-Hayles, L.; Angers-Blondin, S.; Beck, P.S.A.; et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Chang. 2020, 10, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, A.; Widhalm, B.; Kuhry, P.; Hugelius, G.; Palmtag, J.; Siewert, M.B. Can C-band synthetic aperture radar be used to estimate soil organic carbon storage in tundra? Biogeosciences 2016, 13, 5453–5470. [Google Scholar] [CrossRef] [Green Version]
- Duguay, Y.; Bernier, M.; Lévesque, E.; Domine, F. Land cover classification in SubArctic regions using fully polarimetric RADARSAT-2 data. Remote Sens. 2016, 8, 697. [Google Scholar] [CrossRef] [Green Version]
- Lara, M.J.; Nitze, I.; Grosse, G.; McGuire, A.D. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska. Sci. Data 2018, 5, 180058. [Google Scholar] [CrossRef]
- Stettner, S.; Beamish, A.; Bartsch, A.; Heim, B.; Grosse, G.; Roth, A.; Lantuit, H. Monitoring inter- and intra-seasonal dynamics of rapidly degrading ice-rich permafrost riverbanks in the Lena Delta with TerraSAR-X time series. Remote Sens. 2017, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Ullmann, T.; Banks, S.N.; Schmitt, A.; Jagdhuber, T. Scattering Characteristics of X-, C- and L-Band PolSAR Data Examined for the Tundra Environment of the Tuktoyaktuk Peninsula, Canada. Appl. Sci. 2017, 7, 595. [Google Scholar] [CrossRef] [Green Version]
- Banks, S.; Ullmann, T.; Roth, A.; Schmitt, A.; Dech, S.; King, D. Classification of Arctic Coastal land covers with polarimetric SAR data. In Proceedings of the 2013 IEEE Radar Conference (RadarCon13), Ottawa, ON, Canada, 29 April–3 May 2013; IEEE: New York, NY, USA, 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Antonova, S.; Kääb, A.; Heim, B.; Langer, M.; Boike, J. Spatio-temporal variability of X-band radar backscatter and coherence over the Lena River Delta, Siberia. Remote Sens. Environ. 2016, 182, 169–191. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Motagh, M. Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 13–31. [Google Scholar] [CrossRef]
- Widhalm, B.; Bartsch, A.; Roth, A.; Leibman, M. Classification of Tundra Regions with Polarimetric Terrasar-X Data. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: New York, NY, USA, 2018; pp. 8551–8554. [Google Scholar] [CrossRef]
- Wang, L.; Marzahn, P.; Bernier, M.; Ludwig, R. Mapping permafrost landscape features using object-based image classification of multi-temporal SAR images. ISPRS J. Photogramm. Remote Sens. 2018, 141, 10–29. [Google Scholar] [CrossRef]
- Schimel, D.; Pavlick, R.; Fisher, J.B.; Asner, G.P.; Saatchi, S.; Townsend, P.; Miller, C.; Frankenberg, C.; Hibbard, K.; Cox, P. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Chang. Biol. 2015, 21, 1762–1776. [Google Scholar] [CrossRef]
- Räsänen, A.; Juutinen, S.; Aurela, M.; Virtanen, T. Predicting aboveground biomass in Arctic landscapes using very high spatial resolution satellite imagery and field sampling. Int. J. Remote Sens. 2019, 40, 1175–1199. [Google Scholar] [CrossRef] [Green Version]
- Reiche, J.; Lucas, R.; Mitchell, A.L.; Verbesselt, J.; Hoekman, D.H.; Haarpaintner, J.; Kellndorfer, J.M.; Rosenqvist, A.; Lehmann, E.A.; Woodcock, C.E.; et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Chang. 2016, 6, 120–122. [Google Scholar] [CrossRef]
- Ullmann, T.; Schmitt, A.; Jagdhuber, T. Two Component Decomposition of Dual Polarimetric HH/VV SAR Data: Case Study for the Tundra Environment of the Mackenzie Delta Region, Canada. Remote Sens. 2016, 8, 1027. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, A.; Widhalm, B.; Leibman, M.; Ermokhina, K.; Kumpula, T.; Skarin, A.; Wilcox, E.J.; Jones, B.M.; Frost, G.V.; Höfler, A.; et al. Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data. Remote Sens. Environ. 2020, 237, 111515. [Google Scholar] [CrossRef]
- Collingwood, A.; Treitz, P.; Charbonneau, F.; Atkinson, D. Artificial Neural Network Modeling of High Arctic Phytomass Using Synthetic Aperture Radar and Multispectral Data. Remote Sens. 2014, 6, 2134–2153. [Google Scholar] [CrossRef] [Green Version]
- Widhalm, B.; Bartsch, A.; Leibman, M.; Khomutov, A. Active-layer thickness estimation from X-band SAR backscatter intensity. Cryosphere 2017, 11, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Collingwood, A.; Charbonneau, R.; Shang, C.; Treitz, P. Spatiotemporal Variability of Arctic Soil Moisture Detected from High-Resolution RADARSAT-2 SAR Data. Adv. Meteorol. 2018, 2018, 1–17. [Google Scholar] [CrossRef]
- Högström, E.; Heim, B.; Bartsch, A.; Bergstedt, H.; Pointner, G. Evaluation of a MetOp ASCAT-Derived Surface Soil Moisture Product in Tundra Environments. J. Geophys. Res. Earth Surf. 2018, 123, 3190–3205. [Google Scholar] [CrossRef] [PubMed]
- Zwieback, S.; Bosch, D.D.; Cosh, M.H.; Starks, P.J.; Berg, A. Vegetation–soil moisture coupling metrics from dual-polarization microwave radiometry using regularization. Remote Sens. Environ. 2019, 231, 111257. [Google Scholar] [CrossRef]
- Cloude, S. Polarisation: Applications in Remote Sensing, 1st ed.; Oxford University Press: Oxford, NY, USA, 2010; p. 453. [Google Scholar]
- Freeman, A.; Durden, S. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Cloude, R.; Pottier, E. A review of target decomposition theores in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Banks, S.N.; King, D.J.; Merzouki, A.; Duffe, J. Characterizing Scattering Behaviour and Assessing Potential for Classification of Arctic Shore and Near-Shore Land Covers with Fine Quad-Pol RADARSAT-2 Data. Can. J. Remote Sens. 2014, 40, 291–314. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Wohlfart, C.; Winkler, K.; Wendleder, A.; Roth, A. TerraSAR-X and Wetlands: A Review. Remote Sens. 2018, 10, 916. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, A.; Wendleder, A.; Hinz, S. The Kennaugh element framework for multi-scale, multi-polarized, multi-temporal and multi-frequency SAR image preparation. ISPRS J. Photogramm. Remote Sens. 2015, 102, 122–139. [Google Scholar] [CrossRef] [Green Version]
- Moser, L.; Schmitt, A.; Wendleder, A.; Roth, A. Monitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-Band SAR Data. Remote Sens. 2016, 8, 302. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, A.; Brisco, B. Wetland Monitoring Using the Curvelet-Based Change Detection Method on Polarimetric SAR Imagery. Water 2013, 5, 1036–1051. [Google Scholar] [CrossRef]
- Bartsch, A.; Pointner, G.; Bergstedt, H.; Widhalm, B.; Wendleder, A.; Roth, A. Utility of Polarizations Available from Sentinel-1 for Tundra Mapping. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021; IEEE: New York, NY, USA, 2021; p. 4. [Google Scholar]
- Lara, M.J. SNAP Data Portal, 2017. [Dataset]. Available online: http://ckan.snap.uaf.edu/dataset/alaskan-arctic-coastal-plain-polygonal-tundra-geomorphology-map/ (accessed on 20 February 2020).
- Bartsch, A.; Widhalm, B.; Pointner, G.; Ermokhina, K.; Leibman, M.; Heim, B. Landcover Derived from Sentinel-1 and Sentinel-2 Satellite data (2015–2018) for subarctic and Arctic Environments. Zentralanstalt für Meteorologie und Geodynamik, Wien. PANGAEA 2019. [Google Scholar] [CrossRef]
- Siewert, M.B.; Hugelius, G.; Heim, B.; Faucherre, S. Landscape controls and vertical variability of soil organic carbon storage in permafrost-affected soils of the Lena River Delta. CATENA 2016, 147, 725–741. [Google Scholar] [CrossRef]
- Inuvialuit Regional Corporation. Inuvialuit Land Administration: Inuvialuit Settlement Region. Available online: https://www.irc.inuvialuit.com/inuvialuit-land-administration (accessed on 26 May 2020).
- Environment and Climate Change Canada. Historical Data: Climate Station Komakuk Beach. 2020. [Dataset]. Available online: https://climate.weather.gc.ca/ (accessed on 20 February 2020).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. Available online: http://www.gloh2o.org/koppen/ (accessed on 20 February 2020). [CrossRef] [PubMed] [Green Version]
- Rampton, V.N. Quarternary Geology, Yukon Coastal Plain Yukon Territory-Northwest Territories. Geological Survey of Canada (GSC) MAP 1503A 1:250,000 Scale. 1982. [Dataset]. Available online: http://data.geology.gov.yk.ca/Compilation/20#InfoTab (accessed on 15 July 2019).
- Overduin, P.; Obu, J. Permafrost in the Northern Hemisphere. 2019. [Dataset]. Available online: https://news.grida.no/new-map-shows-extent-of-permafrost-in-northern-hemisphere (accessed on 8 May 2020).
- CAVM TEAM. Circumpolar Arctic Vegetation Map. (1:7,500,000 scale), Conservation of Arctic Flora and Fauna (CAFF) Map No. 1.0 U.S. Fish and Wildlife Service, Anchorage, Alaska. 2003. [Dataset]. Available online: http://www.arcticatlas.org/maps/themes/cp/ (accessed on 20 February 2020).
- Porter, C.; Morin, P.; Howat, I.; Noh, M.J.; Bates, B.; Peterman, K.; Keesey, S.; Schlenk, M.; Gardiner, J.; Tomko, K.; et al. ArcticDEM, 2018. Harvard Dataverse, V1. [Dataset]. Available online: https://www.pgc.umn.edu/data/arcticdem/ (accessed on 3 October 2019).
- Digital Globe, I. WorldView-3 Image, 2019. [Dataset]. Available online: http://www.digitalglobe.com (accessed on 12 July 2019).
- German Aerospace Center. TerraSAR-X Ground Segment Basic Product Specification Document; German Aerospace Center: Bonn, Germany, 2013; In: TX-GS-DD-3302. [Google Scholar]
- Airbus. TerraSAR-X Image Product Guide: Basic and Enhanced Radar Satellite Imagery; Airbus: Bonn, Germany, 2015; In: OP00xxxxxxxxxx. [Google Scholar]
- Ulaby, F.; Long, D. Microwave Radar and Radiometric Remote Sensing, 1st ed.; University of Michigan Press: Michigan, MI, USA, 2014; p. 984. [Google Scholar] [CrossRef]
- Digital Globe, I. Tools & Resources. Available online: http://www.digitalglobe.com/resources#resource-table-section (accessed on 8 May 2020).
- Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C. Soil Survey Staff. In Field Book for Describing and Sampling Soils, Version 3.0.; Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2012. [Google Scholar]
- Beaudette, D.; Roudier, P.; Brown, A. aqp: Algorithms for Quantitative Pedology, 2020. R package Version 1.19; Available online: https://cran.r-project.org/package=aqp (accessed on 1 February 2020).
- R Core Team, R. R: A Language and Environment for Statistical Computing [Computer Software]. R Foundation for Statistical Computing v3.6.3. 2015. Available online: https://www.R-project.org/ (accessed on 1 February 2020).
- Airbus. Radiometric Calibration of TerraSAR-X Data: Beta Naught and Sigma Naught Coefficient Calculation; Airbus: Bonn, Germany, 2014; In: TSXX-ITD-TN-0049. [Google Scholar]
- SNAP. SNAP—ESA Sentinel Application Platform (Version 8.0.0), 2019 [Computer Software]. Available online: http://step.esa.int (accessed on 1 November 2019).
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications, 1st ed.; Optical Science and Engineering; CRC Press: Boca Raton, MA, USA, 2009; Volume 143, p. 389. [Google Scholar] [CrossRef]
- Exelis Visual Information Solutions. ENVI—Exelis Visual Information Solutions (Version 5.2.2) [Computer Software]. Boulder, Colorado. 2010. Available online: https://www.l3harrisgeospatial.com/Software-Technology/ENVI (accessed on 15 January 2020).
- Exelis Visual Information Solutions. FLAASH © Background. Boulder, Colorado: Exelis Visual Information Solutions. Available online: https://www.l3harrisgeospatial.com/docs/backgroundflaash.html (accessed on 15 January 2020).
- Belfiore, O.R.; Meneghini, C.; Parente, C.; Santamaria, R. Application Of Different Pan-Sharpening Methods On WorldView-3 Images. ARPN J. Eng. Appl. Sci. 2016, 11, 7. [Google Scholar]
- Rouse, J.W.J.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. Proc. Third Earth Resour. Technol.-Satell.- Symp. 1973, 1, 309–317. [Google Scholar]
- Baatz, M.; Schäpe, A. Multiresolution segmentation—An optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Informationsverarbeitung XII; Wichmann Verlag: Karlsruhe, Germany, 2000; pp. 12–23. [Google Scholar]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- van Iersel, W.; Straatsma, M.; Middelkoop, H.; Addink, E. Multitemporal Classification of River Floodplain Vegetation Using Time Series of UAV Images. Remote Sens. 2018, 10, 1144. [Google Scholar] [CrossRef] [Green Version]
- Ramsar Convention Secretariat. Wetland inventory: A Ramsar framework for wetland inventory and ecological character description. In Ramsar Handbooks for the Wise Use of Wetlands, 4th ed.; Ramsar Convention Secretariat: Gland, Switzerland, 2010; Volume 15, p. 79. [Google Scholar]
- Canada Committee on Ecological (Biophysical) Land Classification and the National Wetlands Working Group. The Canadian Wetland Classification System, 2nd ed.; Wetlands Research Branch, University of Waterloo: Waterloo, ON, USA, 1997; p. 68, OCLC: 43464321. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.; Cutler, A.; Liaw, A.; Wiener, M. randomForest: Breiman and Cutler’s Random Forests for Classification and Regression, R Package Version 4.6-14; 2018. Available online: https://cran.r-project.org/package=randomForest (accessed on 1 February 2020).
- Kuhn, M. Caret: Classification and Regression Training. 2020. R package version 6.0-85. Available online: https://cran.r-project.org/package=caret (accessed on 1 February 2020).
- Diaz-Uriarte, R. varSelRF: Variable Selection Using Random Forests. 2017. R Package Version 0.7-8. Available online: https://cran.r-project.org/package=varSelRF (accessed on 1 February 2020).
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- A’Campo, W.; Bartsch, A.; Roth, A.; Wendleder, A.; Durstewitz, L.; Lodi, R.; Martin, V.S.; Wagner, J.; Hugelius, G. Raster land cover product derived from TerraSAR-X imagery for the Komakuk Beach study site on the Beaufort Coast, Canada. PANGAEA 2021. [Google Scholar] [CrossRef]
- Banks, S.; Millard, K.; Behnamian, A.; White, L.; Ullmann, T.; Charbonneau, F.; Chen, Z.; Wang, H.; Pasher, J.; Duffe, J. Contributions of Actual and Simulated Satellite SAR Data for Substrate Type Differentiation and Shoreline Mapping in the Canadian Arctic. Remote Sens. 2017, 9, 1206. [Google Scholar] [CrossRef] [Green Version]
Field Campaign | Date | Location | Datasets | Plot Count | ||
---|---|---|---|---|---|---|
Komakuk Beach | 3–24 August 2019 | Top: 69°3619.22 N | Soil | 47 | ||
Bottom: 69°3211.59 N | Vegetation | 47 | ||||
Left: 140°1554.26 W | Landcover | 105 | ||||
Right: 140°533.68 W | ||||||
Product | Tile | Spatial Resolution | Registration | Count of GCP’s | vertical residual | vertical residual |
ArcticDEM | 42_18 | 2 m | ICEsat | 998 | −0.001 m | −0.062 m |
43_18 | 1018 | 0 m | −0.018 m | |||
TanDEM-X DEM | 10 m | |||||
Sensor | Acquisition Date | Spatial Resolution | Image Bands | |||
WV-3 | 12 July 2019 | 1.31 m | Coastal: 400–450 nm | Red: 630–690 nm | ||
Blue: 450–510 nm | Red Edge: 705–745 nm | |||||
Green: 510–580 nm | NIR-1: 770–895 nm | |||||
Yellow: 585–625 nm | NIR-2: 860–1040 nm | |||||
0.33 m | Panchromatic: 450–800 nm | |||||
Sensor | Acquisition Date | Spatial Resolution × | Mode | Incidence Angle | Polarization | NESZ |
TSX | 27 July 2019 | 2.1 m × 2.3 m | Stripmap | 41.6 | HH/HV | −19 dB |
TSX | 18 August 2019 | 2.1 m × 2.3 m | Stripmap | 41.5 | HH/HV | −19 dB |
TSX | 9 September 2019 | 2.1 m × 2.3 m | Stripmap | 41.6 | HH/HV | −19 dB |
TSX | 20 October 2019 | 2.1 m × 2.3 m | Stripmap | 41.6 | HH/HV | −19 dB |
TSX | 20 October 2019 | 2.1 m × 2.3 m | Stripmap | 41.6 | HH/HV | −19 dB |
TSX | 14 November 2019 | 2.1 m × 2.3 m | Stripmap | 41.6 | HH/HV | −19 dB |
TSX | 6 December 2019 | 2.1 m × 2.3 m | Stripmap | 41.6 | HH/HV | −19 dB |
Class | Class Description | Reference Objects | Pixel Count | ||||
---|---|---|---|---|---|---|---|
Count | Area (m2) | Training | Validation | Total | |||
High-center polygon | HCP | Wetland polygon bog (often >40 cm surface peat) dominated by lichen and shrubs. Average shrub height < 20 cm | 61 | 108,552 | 3024 | 1295 | 4319 |
Low-center polygon | LCP | Wetland polygon fen (often >40 cm surface peat) dominated by graminoids | 39 | 59,152 | 1661 | 711 | 2372 |
Fen | F | Wetland stream fen or sloping fen (often >40 cm surface peat) dominated by graminoids | 11 | 19,296 | 537 | 230 | 767 |
Meadow | M | Riverine floodplain dominated by graminoids with mineral soils | 5 | 8790 | 245 | 104 | 349 |
Shrubs | Sh | Riverine floodplain dominated by woody shrubs with mineral soils. Average shrub height >40 cm | 12 | 14,113 | 398 | 170 | 568 |
Bare soil | BS | Exposed soil along the coast, lakes, and streams | 14 | 15,625 | 445 | 190 | 635 |
Fresh water | FW | Freshwater lakes, ponds, and streams | 19 | 39,995 | 1116 | 477 | 1593 |
Sea | S | Sea water | 8 | 14,586 | 411 | 176 | 587 |
Other | O | Anthropogenic structures | 10 | 15,003 | 423 | 181 | 604 |
Total | 179 | 295,114 | 8260 | 3534 | 11,794 |
Name | Description | Symbol | Source |
---|---|---|---|
HH | Sigma Nought intensity of the HH channel | HH | n/a |
HV | Sigma Nought intensity of the HV channel | HV | n/a |
cR | Cross-polarised ratio of the HH and HV channels. | cR | [53] |
Kennaugh Matrix element, total intensity | [36] | ||
Kennaugh Matrix element, difference between co- and cross-pol intensity | [36] | ||
Mean | Local mean of the co-occurrence matrix | M | [70] |
Variance | Local variance of the co-occurrence matrix | V | [70] |
Homogeneity | Local homogeneity of the co-occurrence matrix | H | [70] |
Contrast | Local contrast of the co-occurrence matrix | Con | [70] |
Dissimilarity | Local dissimilarity of the co-occurrence matrix | D | [70] |
Entropy | Local entropy of the co-occurrence matrix | E | [70] |
Second Moment | Local angular second moment of the co-occurrence matrix | ScM | [70] |
Correlation | Local correlation of the co-occurrence matrix | Cor | [70] |
Classification Schemes and Layer Naming Convention | |||||
---|---|---|---|---|---|
Name | Description | Layer Naming Convention | Predictors | ||
SN C1 | Sigma Nought (SN) | HH_%date% | 21 | ||
classification scheme | HV_%date% | ||||
cR_%date% | |||||
SN C2 | Sigma Nought (SN) classification scheme using texture predictors | HH_%date%_M | HV_%date%_M | cR_%date%_M | 168 |
HH_%date%_V | HV_%date%_V | cR_%date%_V | |||
HH_%date%_H | HV_%date%_H | cR_%date%_H | |||
HH_%date%_Con | HV_%date%_Con | cR_%date%_Con | |||
HH_%date%_D | HV_%date%_D | cR_%date%_D | |||
HH_%date%_E | HV_%date%_E | cR_%date%_E | |||
HH_%date%_ScM | HV_%date%_ScM | cR_%date%_ScM | |||
HH_%date%_Cor | HV_%date%_Cor | cR_%date%_Cor | |||
KE C1 | Kennaugh Element (KE) | k0_%date% | 14 | ||
classification scheme | k1_%date% | ||||
KE C2 | Kennaugh Element (KE) classification scheme using texture predictors | k0_%date%_M | k1_%date%_M | 112 | |
k0_%date%_V | k1_%date%_V | ||||
k0_%date%_H | k1_%date%_H | ||||
k0_%date%_Con | k1_%date%_Con | ||||
k0_%date%_D | k1_%date%_D | ||||
k0_%date%_E | k1_%date%_E | ||||
k0_%date%_ScM | k1_%date%_ScM | ||||
k0_%date%_Cor | k1_%date%_Cor |
Land Cover Class | Min (cm) | Max (cm) | Mean (cm) | SD (cm) | Height Class |
---|---|---|---|---|---|
Fen | 17 | 36 | 27 | 7 | low |
High-center polygon | 6 | 20 | 9 | 4 | dwarf/low |
Low-center polygon | 8 | 29 | 17 | 5 | low |
Meadow | 12 | 23 | 17 | 6 | low |
Shrubs | 40 | 230 | n/a | n/a | medium/tall |
Sigma Nought | Kennaugh Element | |||
---|---|---|---|---|
Scheme | SN C1 | SN C2 | KE C1 | KE C2 |
Model performance | ||||
Optimal model | RF2_SNC1 | RF2_SNC2 | RF1_KEC1 | RF2_C6 |
ntrain | 8235 | 8235 | 8260 | 8260 |
Predictors | 17 | 107 | 14 | 58 |
mtry | 3 | 9 | 2 | 13 |
ntree | 200 | 200 | 200 | 200 |
OOB error (%) | 41.6 | 2.7 | 7.6 | 0.7 |
OAtrain (%) | 58.6 | 97.3 | 92.2 | 99.2 |
Time (min) | 1.1 | 5.1 | 0.8 | 2.8 |
External validation | ||||
nval | 3523 | 3523 | 3534 | 3534 |
OAval | 57.7 | 97.6 | 92.4 | 99.3 |
OAtrain − OAval | 0.9 | −0.3 | −0.2 | −0.2 |
Sigma Nought | Kennaugh Element | |||||||
---|---|---|---|---|---|---|---|---|
SN C1 | SN C2 | KE C1 | KE C2 | |||||
UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | |
Bare soil | 79.8 | 37.4 | 99.5 | 96.8 | 95.7 | 82.6 | 99.0 | 100.0 |
Fen | 78.3 | 7.8 | 100 | 95.7 | 94.2 | 84.8 | 100.0 | 99.6 |
High center polygon | 51.2 | 87.3 | 95.6 | 99.5 | 91.2 | 95.9 | 99.6 | 99.3 |
Low center polygon | 43.8 | 31.2 | 97.6 | 96.1 | 86.7 | 91.8 | 98.9 | 99.7 |
Meadow | 0 | 0 | 100 | 88.6 | 100 | 77.9 | 100 | 99.0 |
Other | 75.9 | 12.4 | 100 | 98.9 | 94.9 | 92.3 | 100.0 | 100.0 |
Sea | 84.8 | 83.3 | 100 | 98.9 | 98.9 | 99.4 | 100.0 | 99.4 |
Shrubs | 56.4 | 13.1 | 98.1 | 91.7 | 89.8 | 77.6 | 97.1 | 97.1 |
Fresh water | 87.7 | 85.3 | 99.2 | 99.4 | 99.1 | 97.1 | 99.8 | 99.6 |
OA (%) | 57.7 | 97.6 | 92.4 | 99.3 |
Ref. | BS | F | HCP | LCP | M | O | Se | Sh | FW | Total | UA (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pred. | ||||||||||||
Bare soil | 157 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 5 | 164 | 95.7 | |
Fen | 1 | 195 | 5 | 3 | 0 | 2 | 0 | 1 | 0 | 207 | 94.2 | |
High-center polygon | 19 | 13 | 1242 | 55 | 12 | 5 | 0 | 13 | 3 | 1362 | 91.2 | |
Low-center polygon | 3 | 18 | 45 | 653 | 5 | 3 | 0 | 22 | 4 | 753 | 86.7 | |
Meadow | 0 | 0 | 0 | 0 | 81 | 0 | 0 | 0 | 0 | 81 | 100.0 | |
Other | 8 | 1 | 0 | 0 | 0 | 167 | 0 | 0 | 0 | 176 | 94.9 | |
Sea | 0 | 0 | 0 | 0 | 0 | 0 | 175 | 0 | 2 | 177 | 98.9 | |
Shrubs | 1 | 3 | 2 | 0 | 6 | 3 | 0 | 132 | 0 | 147 | 89.8 | |
Fresh water | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 463 | 467 | 99.1 | |
total | 190 | 230 | 1295 | 711 | 104 | 181 | 176 | 170 | 477 | 3534 | OA (%) | |
PA (%) | 82.6 | 84.8 | 95.9 | 91.8 | 77.9 | 92.3 | 99.4 | 77.6 | 97.1 | 92.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
A’Campo, W.; Bartsch, A.; Roth, A.; Wendleder, A.; Martin, V.S.; Durstewitz, L.; Lodi, R.; Wagner, J.; Hugelius, G. Arctic Tundra Land Cover Classification on the Beaufort Coast Using the Kennaugh Element Framework on Dual-Polarimetric TerraSAR-X Imagery. Remote Sens. 2021, 13, 4780. https://doi.org/10.3390/rs13234780
A’Campo W, Bartsch A, Roth A, Wendleder A, Martin VS, Durstewitz L, Lodi R, Wagner J, Hugelius G. Arctic Tundra Land Cover Classification on the Beaufort Coast Using the Kennaugh Element Framework on Dual-Polarimetric TerraSAR-X Imagery. Remote Sensing. 2021; 13(23):4780. https://doi.org/10.3390/rs13234780
Chicago/Turabian StyleA’Campo, Willeke, Annett Bartsch, Achim Roth, Anna Wendleder, Victoria S. Martin, Luca Durstewitz, Rachele Lodi, Julia Wagner, and Gustaf Hugelius. 2021. "Arctic Tundra Land Cover Classification on the Beaufort Coast Using the Kennaugh Element Framework on Dual-Polarimetric TerraSAR-X Imagery" Remote Sensing 13, no. 23: 4780. https://doi.org/10.3390/rs13234780
APA StyleA’Campo, W., Bartsch, A., Roth, A., Wendleder, A., Martin, V. S., Durstewitz, L., Lodi, R., Wagner, J., & Hugelius, G. (2021). Arctic Tundra Land Cover Classification on the Beaufort Coast Using the Kennaugh Element Framework on Dual-Polarimetric TerraSAR-X Imagery. Remote Sensing, 13(23), 4780. https://doi.org/10.3390/rs13234780