# High Performance Computing in Satellite SAR Interferometry: A Critical Perspective

^{*}

## Abstract

**:**

## 1. Introduction

^{15}FLOPS). Current supercomputing capacity is reported in detail in the TOP500 list of supercomputers [1].

## 2. SAR Interferometric Processing

#### 2.1. SAR Interferometry Fundamentals

#### 2.2. SAR Raw Data Focusing

#### 2.3. Image Coregistration

#### 2.4. Interferograms Formation and Filtering

#### 2.5. Phase Unwrapping Operations

#### 2.6. Multi-Temporal Interferometric SAR Techniques

## 3. Operational SAR Systems and Applications

#### 3.1. New-Generation and Forthcoming Spaceborne SAR Sensors

#### 3.2. InSAR Applications and Products

## 4. High Performance Computing: Fundamentals Concepts and Models

#### 4.1. Parallel Computing Architectures

#### 4.2. Parallel Programming Models for HPC Systems

#### 4.3. Performance Metrics

#### 4.4. Cloud Computing vs. HPC

## 5. Selected HPC Approaches in InSAR Fundamental Functional Stages

#### 5.1. SAR Data Focusing

#### 5.2. SAR Image Coregistration

#### 5.3. InSAR Filtering

#### 5.4. Phase Unwrapping

## 6. Selected MT-InSAR Techniques Using HPC or Cloud-Based Platforms

#### 6.1. MT-InSAR Processing Using HPC

#### 6.2. MT-InSAR Processing via Cloud-Based Platforms and Services

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Top 500—The November 2020 List. Available online: https://www.top500.org/lists/top500/2020/11/ (accessed on 11 November 2021).
- Lee, C.A.; Gasster, S.D.; Plaza, A.; Chang, C.; Huang, B. Recent Developments in High Performance Computing for Remote Sensing: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2011**, 4, 508–527. [Google Scholar] [CrossRef] - Euillades, P.; Euillades, L.D. Recent advancements in multi-temporal methods applied to new generation SAR systems and applications in South America. J. S. Am. Earth Sci.
**2021**, 11, 103410. [Google Scholar] [CrossRef] - Solaro, G.; Imperatore, P.; Pepe, A. Satellite SAR Interferometry for Earth’s Crust Deformation Monitoring and Geological Phenomena Analysis. In Geospatial Technology—Environmental and Social Applications; InTech: Rijeka, Croatia, 2016. [Google Scholar]
- Hu, J.; Li, Z.-W.; Ding, X.; Zhu, J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Sci. Rev.
**2014**, 133, 1–17. [Google Scholar] [CrossRef] - Ho Tong Minh, D.; Hanssen, R.; Rocca, F. Radar Interferometry: 20 Years of Development in Time Series Techniques and Future Perspectives. Remote Sens.
**2020**, 12, 1364. [Google Scholar] [CrossRef] - Plaza, A.; Du, Q.; Chang, Y.-L.; King, R.L. High performance computing for hyperspectral remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2011**, 4, 528–544. [Google Scholar] [CrossRef] - Zhao, Y. Remote sensing based soil moisture estimation on high performance PC server. In Proceedings of the 2010 International Conference on Environmental Science and Information Application Technology, ESIAT, Wuhan, China, 17–18 July 2010; Volume 1, pp. 64–69. [Google Scholar]
- Wang, Y.; Ma, Y.; Liu, P.; Liu, D.; Xie, J. An optimized image mosaic algorithm with parallel I/O and dynamic grouped parallel strategy based on minimal spanning tree. In Proceedings of the 2010 9th International Conference on Grid and Cooperative Computing, GCC, Nanjing, China, 1–5 November 2010; pp. 501–506. [Google Scholar]
- Xiaorong, X.; Lei, G.; Hongfu, W.; Fang, X. A parallel fusion method of remote sensing image based on IHS transformation. In Proceedings of the 2011 4th International Congress on Image and Signal Processing, CISP, Shanghai, China, 15–17 October 2011; Volume 3, pp. 1600–1603. [Google Scholar]
- Kim, T.; Choi, M.; Chae, T. Parallel processing with MPI for inter-band registration in remote sensing. In Proceedings of the 2011 IEEE 17th International Conference on Parallel and Distributed Systems, ICPADS, Tainan, Taiwan, 7–9 December 2011; pp. 1021–1025. [Google Scholar]
- Cui, Z.; Quan, H.; Cao, Z.; Xu, S.; Ding, C.; Wu, J. SAR Target CFAR Detection Via GPU Parallel Operation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2018**, 11, 4884–4894. [Google Scholar] [CrossRef] - Balz, T.; Stilla, U. Hybrid GPU-Based Single- and Double-Bounce SAR Simulation. IEEE Trans. Geosci. Remote Sens.
**2009**, 47, 3519–3529. [Google Scholar] [CrossRef] - Massonnet, D.; Feigl, K. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys.
**2009**, 36, 441–500. [Google Scholar] [CrossRef][Green Version] - Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl.
**1998**, 14, R1–R54. [Google Scholar] [CrossRef] - Zebker, H.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens.
**1992**, 30, 950–959. [Google Scholar] [CrossRef][Green Version] - Agram, P.S.; Simons, M. A noise model for InSAR time series. J. Geophys. Res. Solid Earth
**2015**, 120, 2752–2771. [Google Scholar] [CrossRef] - Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. Remote Sens.
**2016**, 115, 78–89. [Google Scholar] [CrossRef][Green Version] - Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens.
**2000**, 38, 2202–2212. [Google Scholar] [CrossRef][Green Version] - Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens.
**2001**, 39, 8–20. [Google Scholar] [CrossRef] - Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett.
**2004**, 31, L23611. [Google Scholar] [CrossRef] - Lv, X.; Yazici, B.; Zeghal, M.; Bennett, V.; Abdoun, T. Joint-Scatterer Processing for Time-Series InSAR. IEEE Trans. Geosci. Remote Sens.
**2014**, 52, 7205–7221. [Google Scholar] [CrossRef] - Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens.
**2002**, 40, 2375–2383. [Google Scholar] [CrossRef][Green Version] - Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and Nonlinear Terrain Deformation Maps from a Reduced Set of Interferometric SAR Images. IEEE Trans. Geosci. Remote Sens.
**2003**, 41, 2243–2253. [Google Scholar] [CrossRef] - Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens.
**2011**, 49, 3460–3470. [Google Scholar] [CrossRef] - Hetland, E.A.; Musé, P.; Simons, M.; Lin, Y.N.; Agram, P.S.; DiCaprio, C.J. Multiscale InSAR Time Series (MInTS) Analysis of Surface Deformation. J. Geophys. Res. Solid Earth
**2012**, 117, 8731. [Google Scholar] [CrossRef][Green Version] - Goel, K.; Adam, N. A Distributed Scatterer Interferometry Approach for Precision Monitoring of Known Surface Deformation Phenomena. IEEE Trans. Geosci. Remote Sens.
**2014**, 52, 5454–5468. [Google Scholar] [CrossRef] - Curlander, J.C.; McDonough, R. Synthetic Aperture Radar—Systems and Signal Processing; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Cumming, I.; Bennett, J. Digital processing of Seasat SAR data. In Proceedings of the ICASSP ‘79. IEEE International Conference on Acoustics, Speech, and Signal Processing, Washington, DC, USA, 2–4 April 1979; pp. 710–718. [Google Scholar] [CrossRef]
- Raney, R.; Runge, H.; Bamler, R.; Cumming, I.; Wong, F. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens.
**1994**, 32, 786–799. [Google Scholar] [CrossRef] - An, D.; Huang, X.; Jin, T.; Zhou, Z. Extended Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Data Focusing. IEEE Trans. Geosci. Remote Sens.
**2012**, 50, 3595–3609. [Google Scholar] [CrossRef] - Cumming, I.G.; Neo, Y.L.; Wong, F.H. InterpretationsoftheOmega-K algorithm and comparisons with other algorithms. Proc. IEEE Int. Geosci. Remote Sens. Symp.
**2003**, 3, III–1455–III–1458. [Google Scholar] - Lanari, R. A new method for the compensation of the SAR range cell migration based on the chirp z-transform. IEEE Trans. Geosci. Remote Sens.
**1995**, 33, 1296–1299. [Google Scholar] [CrossRef] - De Zan, F.; Guarnieri, A.M. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens.
**2006**, 44, 2352–2360. [Google Scholar] [CrossRef] - Potin, P.; Rosich, B.; Roeder, J.; Bargellini, P. Sentinel-1 Mission operations concept. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1465–1468. [Google Scholar] [CrossRef]
- Prats, P.; Scheiber, R.; Mittermayer, J.; Meta, A.; Moreira, A. Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling. IEEE Trans. Geosci. Remote Sens.
**2010**, 48, 770–780. [Google Scholar] [CrossRef][Green Version] - Xu, W.; Huang, P.; Deng, Y. TOPSAR data focusing based on azimuth scaling preprocessing. Adv. Space Res.
**2011**, 48, 270–277. [Google Scholar] [CrossRef] - Huang, P.; Xu, W. An efficient imaging approach for TOPS SAR data focusing based on scaled Fourier transform. Prog. Electromagn. Res.
**2013**, 47, 297–313. [Google Scholar] [CrossRef][Green Version] - Sun, G.; Xing, M.; Wang, Y.; Wu, Y.; Wu, Y.; Bao, Z. Sliding Spotlight and TOPS SAR Data Processing without Subaperture. IEEE Geosci. Remote Sens. Lett.
**2011**, 8, 1036–1040. [Google Scholar] [CrossRef] - Xu, W.; Huang, P.; Wang, R.; Deng, Y.; Lu, Y. TOPS-Mode Raw Data Processing Using Chirp Scaling Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2014**, 7, 235–246. [Google Scholar] [CrossRef] - Yang, W.; Chen, J.; Zeng, H.C.; Wang, P.B.; Liu, W. A Wide-Swath Spaceborne TOPS SAR Image Formation Algorithm Based on Chirp Scaling and Chirp-Z Transform. Sensors
**2016**, 16, 2095. [Google Scholar] [CrossRef] [PubMed][Green Version] - Yang, W.; Chen, J.; Liu, W.; Wang, P.; Li, C. A Modified Three-Step Algorithm for TOPS and Sliding Spotlight SAR Data Processing. IEEE Trans. Geosci. Remote Sens.
**2017**, 55, 6910–6921. [Google Scholar] [CrossRef][Green Version] - Engen, G.; Larsen, Y. Efficient Full Aperture Processing of TOPS Mode Data Using the Moving Band Chirp Z-Transform. IEEE Trans. Geosci. Remote Sens.
**2011**, 49, 3688–3693. [Google Scholar] [CrossRef] - Fusco, A.; Pepe, A.; Berardino, P.; De Luca, C.; Buonanno, S.; Lanari, R. A Phase-Preserving Focusing Technique for TOPS Mode SAR Raw Data Based on Conventional Processing Methods. Sensors
**2019**, 19, 3321. [Google Scholar] [CrossRef][Green Version] - Liao, M.; Lin, H.; Zhang, Z. Automatic Registration of INSAR Data Based on Least-Square Matching and Multi-Step Strategy. Photogramm. Eng. Remote Sens.
**2004**, 70, 1139–1144. [Google Scholar] [CrossRef] - Liu, B.-Q.; Feng, D.-Z.; Shui, P.-L.; Wu, N. Analytic Search Method for Interferometric SAR Image Registration. IEEE Geosci. Remote Sens. Lett.
**2008**, 5, 294–298. [Google Scholar] - Sansosti, E.; Berardino, P.; Manunta, M.; Serafino, F.; Fornaro, G. Geometrical SAR image registration. IEEE Trans. Geosci. Remote Sens.
**2006**, 44, 2861–2870. [Google Scholar] [CrossRef] - Imperatore, P.; Sansosti, E. Multithreading Based Parallel Processing for Image Geometric Coregistration in SAR Interferometry. Remote Sens.
**2021**, 13, 1963. [Google Scholar] [CrossRef] - Scheiber, R.; Moreira, A. Coregistration of interferometric SAR images using spectral diversity. IEEE Trans. Geosci. Remote Sens.
**2000**, 38, 2179–2191. [Google Scholar] [CrossRef] - Prats-Iraola, P.; Scheiber, R.; Marotti, L.; Wollstadt, S.; Reigber, A. TOPS interferometry with TerraSAR-X. IEEE Trans. Geosci. Remote Sens.
**2012**, 50, 3179–3188. [Google Scholar] [CrossRef][Green Version] - Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett.
**1998**, 25, 4035–4038. [Google Scholar] [CrossRef][Green Version] - Sun, Q.; Li, Z.W.; Ding, X.; Xu, B. Improved Goldstein filter for InSAR noise reduction based on local SNR. J. Cent. South Univ.
**2013**, 20, 1896–1903. [Google Scholar] [CrossRef] - Sica, F.; Cozzolino, D.; Verdoliva, L.; Poggi, G. The Offset-Compensated Nonlocal Filtering of Interferometric Phase. Remote Sens.
**2018**, 10, 1359. [Google Scholar] [CrossRef][Green Version] - Baier, G.; Rossi, C.; Bamler, R. A Nonlocal InSAR Filter for High-Resolution DEM Generation from TanDEM-X Interferograms. IEEE Trans. Geosci. Remote Sens.
**2018**, 56, 6469–6483. [Google Scholar] [CrossRef][Green Version] - Pu, L.M.; Zhang, X.L.; Zhou, Y.Y. A Phase Filtering Method with Scale Recurrent Networks for InSAR. Remote Sens.
**2020**, 12, 3453. [Google Scholar] [CrossRef] - Khaki, M.; Filmer, M.S.; Featherstone, W.E.; Kuhn, M.; Parker, A.L. A Sequential Monte Carlo Framework for Noise Filtering in InSAR Time Series. IEEE Trans. Geosci. Remote Sens.
**2020**, 58, 1904–1912. [Google Scholar] [CrossRef] - Pepe, A. Theory and Statistical Description of the Enhanced Multi-Temporal InSAR (E-MTInSAR) Noise-Filtering Algorithm. Remote Sens.
**2019**, 11, 363. [Google Scholar] [CrossRef][Green Version] - Lee, J.-S.; Papathanassiou, K.P.; Ainsworth, T.L.; Grunes, M.R.; Reigber, A. A New Technique for Noise Filtering of SAR Interferometric Phase Images. IEEE Trans. Geosci. Remote Sens.
**1998**, 36, 1456–1465. [Google Scholar] - Just, D.; Bamler, R. Phase statistics of interferograms with applications to synthetic aperture radar. Appl. Opt.
**1994**, 33, 4361–4368. [Google Scholar] [CrossRef] - López-Martínez, C.; Pottier, E. On the Extension of Multidimensional Speckle Noise Model from Single-Look to Multilook SAR Imagery. IEEE Trans. Geosci. Remote Sens.
**2007**, 45, 305–320. [Google Scholar] [CrossRef] - Baran, I.; Stewart, M.; Kampes, B.; Perski, Z.; Lilly, P. A modification to the Goldstein radar interferogram filter. IEEE Trans. Geosci. Remote Sens.
**2003**, 41, 2114–2118. [Google Scholar] [CrossRef][Green Version] - Meng, D.; Sethu, V.; Ambikairajah, E.; Ge, L. A Novel Technique for Noise Reduction in InSAR Images. IEEE Geosci. Remote Sens. Lett.
**2007**, 4, 226–230. [Google Scholar] [CrossRef] - Lee, J.-S.; Hoppel, K.W.; Mango, S.A.; Miller, A.R. Intensity and Phase Statistics of Multilook Polarimetric and Interferometric SAR Imagery. IEEE Trans. Geosci. Remote Sens.
**1994**, 32, 1017–1028. [Google Scholar] - Buades, A.; Coll, B.; Morel, J.-M. A non-local algorithm for image denoising. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005, CVPR, San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 60–65. [Google Scholar] [CrossRef]
- Di Martino, G.; Di Simone, A.; Iodice, A.; Riccio, D. Scattering-Based Nonlocal Means SAR Despeckling. IEEE Trans. Geosci. Remote Sens.
**2016**, 54, 3574–3588. [Google Scholar] [CrossRef] - Deledalle, C.-A.; Denis, L.; Tupin, F. NL-InSAR: Nonlocal Interferogram Estimation. IEEE Trans. Geosci. Remote Sens.
**2010**, 49, 1441–1452. [Google Scholar] [CrossRef] - Chen, J.; Chen, Y.; An, W.; Cui, Y.; Yang, J. Nonlocal Filtering for Polarimetric SAR Data: A Pretest Approach. IEEE Trans. Geosci. Remote Sens.
**2010**, 49, 1744–1754. [Google Scholar] [CrossRef] - Sica, F.; Reale, D. Nonlocal Adaptive Multilooking in SAR Multi- pass Differential Interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2015**, 8, 1727–1742. [Google Scholar] [CrossRef][Green Version] - Fornaro, G.; Franceschetti, G.; Lanari, R.; Sansosti, E.; Tesauro, M. Global and local phase-unwrapping techniques: A comparison. J. Opt. Soc. Am. A
**1997**, 14, 2702–2708. [Google Scholar] [CrossRef] - Goldstein, R.M.; Zebker, H.A.; Werner, C.L. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci.
**1988**, 23, 713–720. [Google Scholar] [CrossRef][Green Version] - Zebker, H.A.; Yu, L. Phase Unwrapping Algorithms for Radar Interferometry: Residue-Cut, Least Squares, and Synthesis Algorithms. JOSA-A
**1997**, 15, 586–598. [Google Scholar] [CrossRef] - Su, X.; Chen, W. Reliability-guided phase unwrapping algorithm: A review. Opt. Lasers Eng.
**2004**, 42, 245–261. [Google Scholar] [CrossRef] - Ghiglia, D.C.; Romero, L.A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt. Soc. Am. A
**1994**, 11, 107–117. [Google Scholar] [CrossRef] - Fornaro, G.; Sansosti, E. A two-dimensional region growing least squares phase unwrapping algorithm for interferometric SAR processing. IEEE Trans. Geosci. Remote Sens.
**1999**, 37, 2215–2226. [Google Scholar] [CrossRef] - Pritt, M. Phase unwrapping by means of multigrid techniques for interferometric SAR. IEEE Trans. Geosci. Remote Sens.
**1996**, 34, 728–738. [Google Scholar] [CrossRef] - Flynn, T.J. Two-dimensional phase unwrapping with minimum weighted discontinuity. J. Opt. Soc. Am. A
**1997**, 14, 2692–2701. [Google Scholar] [CrossRef] - Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens.
**1998**, 36, 813–821. [Google Scholar] [CrossRef] - Pritt, M.; Shipman, J. Least-squares two-dimensional phase unwrapping using FFT’s. IEEE Trans. Geosci. Remote Sens.
**1994**, 32, 706–708. [Google Scholar] [CrossRef] - Costantini, M.; Falco, S.; Malvarosa, F.; Minati, F.; Trillo, F.; Vecchioli, F. A general formulation for robust integration of finite differences and phase unwrapping on sparse multidimensional domains. In Proceedings of the Fringe 2019 workshop, Frascati, Italy, 4 December 2009. [Google Scholar]
- Hooper, A.; Zebker, H.A. Phase unwrapping in three dimensions with application to InSAR time series. J. Opt. Soc. Am. A
**2007**, 24, 2737–2747. [Google Scholar] [CrossRef][Green Version] - Pepe, A.; Lanari, R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. Geosci. Remote Sens.
**2006**, 44, 2374–2383. [Google Scholar] [CrossRef] - Li, R.; Lv, X.; Yuan, J.; Yao, J. A Triangle-Oriented Spatial–Temporal Phase Unwrapping Algorithm Based on Irrotational Constraints for Time-Series InSAR. IEEE Trans. Geosci. Remote Sens.
**2019**, 57, 10263–10275. [Google Scholar] [CrossRef] - Benoit, A.; Pinel-Puysségur, B.; Jolivet, R.; Lasserre, C. CorPhU: An algorithm based on phase closure for the correction of unwrapping errors in SAR interferometry. Geophys. J. Int.
**2020**, 221, 1959–1970. [Google Scholar] [CrossRef][Green Version] - Yu, H.; Xing, M.; Bao, Z. A Fast Phase Unwrapping Method for Large-Scale Interferograms. IEEE Trans. Geosci. Remote Sens.
**2013**, 51, 4240–4248. [Google Scholar] - Gao, J.; Sun, Z. Phase unwrapping method based on parallel local minimum reliability dual expanding for large-scale data. J. Appl. Remote Sens.
**2019**, 13, 038506. [Google Scholar] [CrossRef][Green Version] - Golub, G.H.; Reinsch, C. Singular value decomposition and least squares solutions. Numer. Math.
**1970**, 14, 403–420. [Google Scholar] [CrossRef] - Akbari, V.; Motagh, M. Improved Ground Subsidence Monitoring Using Small Baseline SAR Interferograms and a Weighted Least Squares Inversion Algorithm. IEEE Geosci. Remote Sens. Lett.
**2012**, 9, 437–441. [Google Scholar] [CrossRef] - Hu, J.; Li, Z.; Ding, X.; Zhu, J.; Sun, Q. Spatial-temporal surface deformation of Los Angeles over 2003–2007 from weighted least squares DInSAR. Int. J. Appl. Earth Obs. Geoinf.
**2013**, 21, 484–492. [Google Scholar] [CrossRef] - Ansari, H.; De Zan, F.; Bamler, R. Efficient Phase Estimation for Interferogram Stacks. IEEE Trans. Geosci. Remote Sens.
**2018**, 56, 4109–4125. [Google Scholar] [CrossRef] - Pepe, A.; Yang, Y.; Manzo, M.; Lanari, R. Improved EMCF-SBAS Processing Chain Based on Advanced Techniques for the Noise-Filtering and Selection of Small Baseline Multi-Look DInSAR Interferograms. IEEE Trans. Geosci. Remote Sens.
**2015**, 53, 4394–4417. [Google Scholar] [CrossRef] - Ansari, H.; De Zan, F.; Parizzi, A. Study of Systematic Bias in Measuring Surface Deformation With SAR Interferometry. IEEE Trans. Geosci. Remote Sens.
**2021**, 59, 1285–1301. [Google Scholar] [CrossRef] - Michel, R.; Avouac, J.-P.; Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the Landers Earthquake. Geophys. Res. Lett.
**1999**, 26, 875–878. [Google Scholar] [CrossRef][Green Version] - Bechor, N.B.D.; Zebker, H.A. Measuring two-dimensional movements using a single InSAR pair. Geophys. Res. Lett.
**2006**, 33. [Google Scholar] [CrossRef][Green Version] - Dalaison, M.; Jolivet, R. A Kalman Filter Time Series Analysis Method for InSAR. J. Geophys. Res. Solid Earth
**2020**, 125, 7. [Google Scholar] [CrossRef] - Mitchell, T. Machine Learning; OCLC 36417892; McGraw Hill: New York, NY, USA, 1997; ISBN 0-07-042807-7. [Google Scholar]
- Gaddes, M.E.; Hooper, A.; Bagnardi, M.; Inman, H.; Albino, F. Blind signal separation methods for InSAR: The potential to automatically detect and monitor signals of volcanic deformation. J. Geophys. Res. Solid Earth
**2018**, 123, 10226–10251. [Google Scholar] [CrossRef][Green Version] - Cigna, F.; Tapete, D.; Casagli, N. Semi-automated extraction of Deviation Indexes (DI) from satellite Persistent Scatterers time series: Tests on sedimentary volcanism and tectonically-induced motions. Nonlinear Process. Geophys.
**2012**, 19, 643–655. [Google Scholar] [CrossRef][Green Version] - Biggs, J.; Wright, T.J. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade. Nat. Commun.
**2020**, 11, 3863. [Google Scholar] [CrossRef] - Lacassin, R.; Devès, M.; Hicks, S.P.; Ampuero, J.-P.; Bossu, R.; Bruhat, L.; Wibisono, D.F.; Fallou, L.; Fielding, E.J.; Gabriel, A.-A.; et al. Rapid collaborative knowledge building via Twitter after significant geohazard events. Geosci. Commun.
**2020**, 3, 129–146. [Google Scholar] [CrossRef] - Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ.
**2012**, 120, 9–24. [Google Scholar] [CrossRef] - Li, B.; Wang, Z.M.; Qin, X.; Zhang, B.; Ma, Y.Y. Time-Series Analysis of Subsidence in Nanning, China, Based on Sentinel-1A Data by the SBAS InSAR Method. PFG-J. Photogramm. Remote Sens. Geoinf. Sci.
**2020**, 88, 291–304. [Google Scholar] [CrossRef] - Dai, K.R.; Li, Z.H.; Stockamp, J. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sens. Environ.
**2016**, 186, 501–513. [Google Scholar] [CrossRef][Green Version] - Grandin, R.; Klein, E.; Vigny, C. Three-dimensional displacement field of the 2015 M(w)8.3 Illapel earthquake (Chile) from across- and along-track Sentinel-1 TOPS interferometry. Geophys. Res. Lett.
**2016**, 43, 2552–2561. [Google Scholar] [CrossRef][Green Version] - Zeni, G.; Bonano, M.; Casu, F.; Manunta, M.; Manzo, M.; Marsella, M.; Pepe, A.; Lanari, R. Long-term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: The case study of the city of Rome, Italy. J. Geophys. Eng.
**2011**, 8, S1. [Google Scholar] [CrossRef] - Werninghaus, R.; Buckreuss, S. The TerraSAR-X Mission and System Design. IEEE Trans. Geosci. Remote Sens.
**2009**, 48, 606–614. [Google Scholar] [CrossRef][Green Version] - Caltagirone, F. Status, results and perspectives of the Italian Earth Observation SAR COSMO–SkyMed. In Proceedings of the 2009 European Radar Conference (EuRAD), Rome, Italy, 30 September–2 October 2009; pp. 330–334. [Google Scholar]
- González, A.S.; Labriola, M.; Soteras, J.C.; Palma, J.S. PAZ instrument design and performance. In Proceedings of the 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, Korea, 26–30 September 2011; pp. 1–4. [Google Scholar]
- Serva, S.; Fiorentino, C.; Covello, F. The COSMO-SkyMed Seconda Generazione key improvements to respond to the user community needs. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 219–222. [Google Scholar] [CrossRef]
- Giraldez, A.E. SAOCOM-1 Argentina L Band SAR Mission Overview. In Proceedings of the 2nd Workshop on Coastal and Marine Applications of SAR, Svalbard, Norway, 8–12 September 2003; Lacoste, H., Ed.; ESA-SP: Paris, France, 2004. Available online: https://earth.esa.int/workshops/cmasar_2003/papers/E27gira.pdf (accessed on 30 October 2021).
- Caltagirone, F.; Capuzi, A.; Coletta, A.; De Luca, G.F.; Scorzafava, E.; Leonardi, R.; Rivola, S.; Fagioli, S.; Angino, G.; L’Abbate, M.; et al. The COSMO-SkyMed Dual Use Earth Observation Program: Development, Qualification, and Results of the Commissioning of the Overall Constellation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2014**, 7, 2754–2762. [Google Scholar] [CrossRef] - Rosen, P.A.; Kim, Y. An L- and S-band SAR Mission Concept for Earth Science and Applications. In Proceedings of the EUSAR 2014, 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014; pp. 1–4. [Google Scholar]
- Sun, J.; Yu, W.; Deng, Y. The SAR Payload Design and Performance for the GF-3 Mission. Sensors
**2017**, 17, 2419. [Google Scholar] [CrossRef][Green Version] - Fujiwara, S.; Nakano, T.; Morishita, Y. Detection of triggered shallow slips caused by large earthquakes using L-band SAR interferometry. Earth Planets Space
**2020**, 72, 119. [Google Scholar] [CrossRef] - Wang, K.; Fialko, Y. Slip model of the 2015 M
_{w}7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data. Geophys. Res. Lett.**2015**, 42, 7452–7458. [Google Scholar] [CrossRef] - Rousset, B.; Jolivet, R.; Simons, M.; Lasserre, C.; Riel, B.; Milillo, P.; Çakir, Z.; Renard, F. An aseismic slip transient on the North Anatolian Fault. Geophys. Res. Lett.
**2016**, 43, 3254–3262. [Google Scholar] [CrossRef][Green Version] - Cheloni, D.; D’Agostino, N.; Selvaggi, G.; Avallone, A.; Fornaro, G.; Giuliani, R.; Reale, D.; Sansosti, E.; Tizzani, P. Aseismic transient during the 2010-2014 seismic swarm: Evidence for longer recurrence of M ≥ 6.5 earthquakes in the Pollino gap (Southern Italy)? Sci. Rep.
**2017**, 7, 576. [Google Scholar] [CrossRef][Green Version] - Zheng, W.; Oliva, S.J.; Ebinger, C.; Pritchard, M.E. Aseismic deformation during the 2014 M
_{w}5.2 Karonga earthquake, Malawi, from satellite interferometry and earthquake source mechanisms. Geophys. Res. Lett.**2020**, 47, e2020GL090930. [Google Scholar] [CrossRef] - De Novellis, V.; Reale, D.; Adinolfi, G.M.; Sansosti, E.; Convertito, V. Geodetic Model of the March 2021 Thessaly Seismic Sequence Inferred from Seismological and InSAR Data. Remote Sens.
**2021**, 13, 3410. [Google Scholar] [CrossRef] - Bato, M.G.; Lundgren, P.; Pinel, V.; Solidum, R.; Daag, A.; Cahulogan, M. The 2020 eruption and large lateral dike emplacement at Taal volcano, Philippines: Insights from satellite radar data. Geophys. Res. Lett.
**2021**, 48, e2021GL092803. [Google Scholar] [CrossRef] - Pagli, C.; Wright, T.; Ebinger, C.J.; Yun, S.-H.; Cann, J.R.; Barnie, T.; Ayele, A. Shallow axial magma chamber at the slow-spreading Erta Ale Ridge. Nat. Geosci.
**2012**, 5, 284–288. [Google Scholar] [CrossRef] - Rivera, A.M.M.; Amelung, F.; Mothes, P.; Hong, S.; Nocquet, J.; Jarrin, P. Ground deformation before the 2015 eruptions of Cotopaxi volcano detected by InSAR. Geophys. Res. Lett.
**2017**, 44, 6607–6615. [Google Scholar] [CrossRef] - Hamlyn, J.; Wright, T.; Walters, R.; Pagli, C.; Sansosti, E.; Casu, F.; Pepe, S.; Edmonds, M.; Kilbride, B.M.; Keir, D.; et al. What causes subsidence following the 2011 eruption at Nabro (Eritrea)? Prog. Earth Planet. Sci.
**2018**, 5, 31. [Google Scholar] [CrossRef][Green Version] - Ruch, J.; Pepe, S.; Casu, F.; Solaro, G.; Pepe, A.; Acocella, V.; Neri, M.; Sansosti, E. Seismo-tectonic behavior of the Pernicana Fault System (Mt Etna): A gauge for volcano flank instability? J. Geophys. Res. Solid Earth
**2013**, 118, 4398–4409. [Google Scholar] [CrossRef] - Gonzalez-Santana, J.; Wauthier, C. Unraveling long-term volcano flank instability at Pacaya Volcano, Guatemala, using satellite geodesy. J. Volcanol. Geotherm. Res.
**2020**, 410, 107147. [Google Scholar] [CrossRef] - Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring. Remote Sens.
**2013**, 5, 1045–1065. [Google Scholar] [CrossRef][Green Version] - Cascini, L.; Fornaro, G.; Peduto, D. Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng. Geol.
**2010**, 112, 29–42. [Google Scholar] [CrossRef] - Rott, H.; Scheuchl, B.; Siegel, A.; Grasemann, B. Monitoring very slow slope movements by means of SAR interferometry: A case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophys. Res. Lett.
**1999**, 26, 1629–1632. [Google Scholar] [CrossRef] - Strozzi, T.; Wegmuller, U.; Keusen, H.; Graf, K.; Wiesmann, A. Analysis of the Terrain Displacement Along a Funicular by SAR Interferometry. IEEE Geosci. Remote Sens. Lett.
**2006**, 3, 15–18. [Google Scholar] [CrossRef] - Rignot, E.; Forster, R.; Isacks, B. Mapping of glacial motion and surface topography of Hielo Patag’onico Norte, Chile, using satellite SAR L-band interferometry data. Ann. Glaciol.
**1996**, 23, 209–216. [Google Scholar] [CrossRef][Green Version] - Michel, R.; Rignot, E. Flow of Glaciar Moreno, Argentina, from repeat-pass Shuttle Imaging Radar images: Comparison of the phase correlation method with radar interferometry. J. Glaciol.
**1999**, 45, 93–100. [Google Scholar] [CrossRef] - Colesanti, C.; Wasowski, J. Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry. Eng. Geol.
**2006**, 88, 173–199. [Google Scholar] [CrossRef] - Herrera, G.; Gutiérrez, F.; García-Davalillo, J.; Guerrero, J.; Notti, D.; Galve, J.P.; Fernandez-Merodo, J.A.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees). Remote Sens. Environ.
**2013**, 128, 31–43. [Google Scholar] [CrossRef] - Riedel, B.; Walther, A. InSAR processing for the recognition of landslides. Adv. Geosci.
**2008**, 14, 189–194. [Google Scholar] [CrossRef][Green Version] - Hilley, G.E.; Bürgmann, R.; Ferretti, A.; Novali, F.; Rocca, F. Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis. Science
**2004**, 304, 1952–1955. [Google Scholar] [CrossRef][Green Version] - Yin, Y.; Zheng, W.; Liu, Y.; Zhang, J.; Li, X. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides
**2010**, 7, 359–365. [Google Scholar] [CrossRef] - Bovenga, F.; Nutricato, R.; Refice, A.; Wasowski, J. Application of multi-temporal differential interferometry to slope instability detection in urban/peri-urban areas. Eng. Geol.
**2006**, 88, 218–239. [Google Scholar] [CrossRef] - Cascini, L.; Fornaro, G.; Peduto, D. Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS J. Photogramm. Remote Sens.
**2009**, 64, 598–611. [Google Scholar] [CrossRef] - Greif, V.; Vlcko, J. Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia. Environ. Earth Sci.
**2011**, 66, 1585–1595. [Google Scholar] [CrossRef] - Fialko, Y.; Simons, M. Deformation and seismicity in the Coso geothermal area, Inyo County, California: Observations and modeling using satellite radar interferometry. J. Geophys. Res.
**2000**, 105, 21781–21793. [Google Scholar] [CrossRef][Green Version] - Zhong, Z.; Huang, D.; Zhang, Y.; Ma, G. Experimental Study on the Effects of Unloading Normal Stress on Shear Mechanical Behaviour of Sandstone Containing a Parallel Fissure Pair. Rock Mech. Rock Eng.
**2019**, 53, 1647–1663. [Google Scholar] [CrossRef] - Wu, S.; Zhang, B.; Liang, H.; Wang, C.S.; Ding, X.; Zhang, L. Detecting the Deformation Anomalies Induced by Underground Construction Using Multiplatform MT-InSAR: A Case Study in To Kwa Wan Station, Hong Kong. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2021**, 14, 9803–9814. [Google Scholar] [CrossRef] - Staniewicz, S.; Chen, J.; Lee, H.; Olson, J.; Savvaidis, A.; Reedy, R.; Breton, C.; Rathje, E.; Hennings, P. InSAR Reveals Complex Surface Deformation Patterns Over an 80,000 km
^{2}Oil—Producing Region in the Permian Basin. Geophys. Res. Lett.**2020**, 47, e2020GL090151. [Google Scholar] [CrossRef] - Pritchard, M.E.; Biggs, J.; Wauthier, C.; Sansosti, E.; Arnold, D.W.D.; Delgado, F.; Ebmeier, S.K.; Henderson, S.T.; Stephens, K.; Cooper, C.; et al. Towards coordinated regional multi-satellite InSAR volcano observations: Results from the Latin America pilot project. J. Appl. Volcanol.
**2018**, 7, 5. [Google Scholar] [CrossRef] - Brancato, V.; Hajnsek, I. Separating the Influence of Vegetation Changes in Polarimetric Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens.
**2018**, 56, 6871–6883. [Google Scholar] [CrossRef] - Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Brisco, B.; Motagh, M. Multi-temporal, multi-frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands. ISPRS J. Photogramm. Remote Sens.
**2018**, 142, 78–93. [Google Scholar] [CrossRef] - Blaes, X.; Defourny, P. Retrieving crop parameters based on tandem ERS 1/2 interferometric coherence images. Remote Sens. Environ.
**2015**, 88, 374–385. [Google Scholar] [CrossRef] - Kim, S.W.; Wdowinski, S.; Won, J.S. Interferometric Coherence Analysis of the Everglades Wetlands, South Florida. IEEE Trans. Geosci. Remote Sens.
**2013**, 51, 5210–5224. [Google Scholar] [CrossRef] - Jung, J.; Kim, D.J.; Lavalle, M.; Yun, S.H. Coherent Change Detection Using InSAR Temporal Decorrelation Model: A Case Study for Volcanic Ash Detection. IEEE Trans. Geosci. Remote Sens.
**2016**, 54, 5765–5775. [Google Scholar] [CrossRef] - Lopez-Sanchez, J.M.; Ballester-Berman, J.D. Potentials of polarimetric SAR interferometry for agriculture monitoring. Radio Sci.
**2009**, 44, 1–20. [Google Scholar] [CrossRef][Green Version] - de Souza Diniz, J.M.F.; Gama, F.F.; Adami, M. Evaluation of polarimetry and interferometry of sentinel-1A SAR data for land use and land cover of the Brazilian Amazon Region. Geocarto Int.
**2020**, 1, 1–19. [Google Scholar] [CrossRef] - De Zan, F.; Gomba, G. Vegetation and soil moisture inversion from SAR closure phases: First experiments and results. Remote Sens. Environ.
**2018**, 217, 562–572. [Google Scholar] [CrossRef][Green Version] - De Zan, F.; Parizzi, A.; Prats-Iraola, P.; Dekker, P.L. A SAR Interferometric Model for Soil Moisture. IEEE Trans. Geosci. Remote Sens.
**2013**, 52, 418–425. [Google Scholar] [CrossRef][Green Version] - Foster, I. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering; Addison-Wesley: Reading, MA, USA, 1995. [Google Scholar]
- Dongarra, J.J.; Foster, I.; Fox, G.C. Sourcebook of Parallel Computing; Morgan Kaufman Publishers: San Francisco, CA, USA, 2003. [Google Scholar]
- Mattson, T.G.; Sanders, B.A. Patterns for Parallel Programming; Addison-Wesley: Boston, MA, USA, 2005. [Google Scholar]
- Top 500—The List. Available online: https://www.top500.org (accessed on 30 October 2021).
- El-Rewini, H.; Abd-El-Barr, M. Advanced Computer Architecture and Parallel Processing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Gebali, F. Algorithms and Parallel Computing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Chapman, B.; Jost, G.; van der Pas, R. Using OpenMP: Portable Shared Memory Parallel Programming; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- NVIDIA CUDA C Programming Guide; Nvidia Corporation: Santa Clara, CA, USA, 2011.
- William, G. Using MPI: Portable Parallel Programming with the Message-Passing Interface; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Reed, D.A.; Dongarra, J. Exascale computing and big data. Commun. ACM
**2015**, 58, 56–68. [Google Scholar] [CrossRef] - Akl, S.G. The Design and Analysis of Parallel Algorithms; Prentice Hall: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
- Hager, G.; Wellein, G. Introduction to High Performance Computing for Scientists and Engineers; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Basili, V.R.; Carver, J.C.; Cruzes, D.; Hochstein, L.M.; Hollingsworth, J.K.; Shull, F.; Zelkowitz, M.V. Understanding the high-performance-computing community: A software engineer’s perspective. IEEE Softw.
**2008**, 25, 29. [Google Scholar] [CrossRef] - El Kamali, M.; Abuelgasim, A.; Papoutsis, I.; Loupasakis, C.; Kontoes, C. A reasoned bibliography on SAR interferometry applications and outlook on big interferometric data processing. Remote Sens. Appl. Soc. Environ.
**2020**, 1, 100358. [Google Scholar] [CrossRef] - Arabas, S.; Jarecka, D.; Jaruga, A.; Fijałkowski, M. Formula Translation in Blitz++, NumPy and Modern Fortran: A Case Study of the Language Choice Tradeoffs. Sci. Program.
**2014**, 22, 201–222. [Google Scholar] [CrossRef][Green Version] - Amani, M.; Ghorbanian, A. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2020**, 13, 5326–5350. [Google Scholar] [CrossRef] - Magellan: A Cloud Computing Testbed. Available online: https://www.nersc.gov/research-and-development/archive/magellan/ (accessed on 30 October 2021).
- Yelick, K.; Coghlan, S.; Draney, B.; Canon, R.S. The Magellan Report on Cloud Computing for Science; US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR): Washington, DC, USA, 2011. [Google Scholar] [CrossRef][Green Version]
- Sadooghi, I.; Martin, J.H.; Li, T.; Brandstatter, K.; Maheshwari, K.; de Lacerda Ruivo, T.P.P.; Raicu, I. Understanding the performance and potential of cloud computing for scientific applications. IEEE Trans. Cloud Comput.
**2015**, 5, 358–371. [Google Scholar] [CrossRef] - Expósito, R.R.; Taboada, G.L.; Ramos, S.; Touriño, J.; Doallo, R. Performance analysis of HPC applications in the cloud. Futur. Gener. Comput. Syst.
**2013**, 29, 218–229. [Google Scholar] [CrossRef][Green Version] - Gupta, A.; Kale, L.V.; Gioachin, F.; March, V.; Suen, C.H.; Lee, B.S.; Milojicic, D. The who, what, why, and how of high performance computing in the cloud. In Proceedings of the 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, Bristol, UK, 2–5 December 2013; Volume 1, pp. 306–314. [Google Scholar]
- Shaowen, W. A CyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis. Ann. Assoc. Am. Geogr.
**2010**, 100, 535–557. [Google Scholar] - Emeras, J.; Varrette, S.; Bouvry, P. Amazon Elastic Compute Cloud (EC2) vs. In-House HPC Platform: A Cost Analysis. In Proceedings of the 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 27 June–2 July 2016; pp. 284–293. [Google Scholar] [CrossRef]
- Kehrer, S.; Blochinger, W. A Survey on Cloud Migration Strategies for High Performance. In Proceedings of the 13th Advanced Summer School on Service-, Crete, Greece, 17–23 June 2019; pp. 57–69. [Google Scholar]
- Kehrer, S.; Blochinger, W. Elastic Parallel Systems for High Performance Cloud Computing: State-of-the-Art and Future Directions. Parallel Process. Lett.
**2019**, 29, 1950006. [Google Scholar] [CrossRef] - Li, G.; Woo, J.; Lim, S.B. HPC Cloud Architecture to Reduce HPC Workflow Complexity in Containerized Environments. Appl. Sci.
**2021**, 11, 923. [Google Scholar] [CrossRef] - Guilherme, G.; De Bona, L.C.E.; Mury, A.R. An analysis of public clouds elasticity in the execution of scientific applications: A survey. J. Grid Comput.
**2016**, 14.2, 193–216. [Google Scholar] - Imperatore, P.; Pepe, A.; Berardino, P.; Lanari, R. A segmented block processing approach to focus synthetic aperture radar data on multicore processors. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 2421–2424. [Google Scholar]
- Imperatore, P.; Pepe, A.; Lanari, R. Spaceborne Synthetic Aperture Radar Data Focusing on Multicore-Based Architectures. IEEE Trans. Geosci. Remote Sens.
**2016**, 54, 4712–4731. [Google Scholar] [CrossRef] - Peternier, A.; Boncori, J.P.M.; Pasquali, P. Near-real-time focusing of ENVISAT ASAR Stripmap and Sentinel-1 TOPS imagery exploiting OpenCL GPGPU technology. Remote Sens. Environ.
**2017**, 202, 45–53. [Google Scholar] [CrossRef] - Peternier, A. Performance analysis of GPU-based SAR and interferometric SAR image processing. In Proceedings of the Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR); Tsukuba, Japan, 23–27 September 2013, pp. 277–280.
- Romano, D.; Lapegna, M.; Mele, V.; Laccetti, G. Designing a GPU-parallel algorithm for raw SAR data compression: A focus on parallel performance estimation. Futur. Gener. Comput. Syst.
**2020**, 112, 695–708. [Google Scholar] [CrossRef] - Zhang, F.; Li, G.; Li, W.; Hu, W.; Hu, Y. Accelerating spaceborne SAR imaging using multiple CPU/GPU deep collaborative computing. Sensors
**2016**, 16, 494. [Google Scholar] [CrossRef][Green Version] - Denham, M.; Areta, J.; Tinetti, F.G. Synthetic aperture radar signal processing in parallel using GPGPU. J. Supercomput.
**2015**, 72, 451–467. [Google Scholar] [CrossRef] - Frey, O.; Werner, C.L.; Wegmuller, U. GPU-based parallelized time-domain back-projection processing for Agile SAR platforms. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1132–1135. [Google Scholar] [CrossRef]
- Wijayasiri, A.; Banerjee, T.; Ranka, S.; Sahni, S.; Schmalz, M. Dynamic Data-Driven SAR Image Reconstruction Using Multiple GPUs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2018**, 11, 4326–4338. [Google Scholar] [CrossRef] - Giancaspro, A.; Candela, L.; Lopint, E.; Loré, V.; Milillo, G. SAR images co-registration parallel implementation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 3, pp. 1337–1339. [Google Scholar] [CrossRef]
- Passerone, C.; Sansoé, C.; Maggiora, R.; Avolio, C.; Zavagli, M.; Minati, F.; Costantini, M. Highly parallel image co-registration techniques using GPUs. In Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, Montana, 1–8 March 2014; pp. 1–12. [Google Scholar]
- Liu, Y.; Zhou, Y.; Zhou, Y.; Ma, L.; Wang, B.; Zhang, F. Accelerating SAR Image Registration Using Swarm-Intelligent GPU Parallelization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2020**, 13, 5694–5703. [Google Scholar] [CrossRef] - Shi, Y.; Zhu, X.; Bamler, R. Optimized parallelization of non-local means filter for image noise reduction of InSAR image. In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 1515–1518. [Google Scholar]
- Zimmer, A.; Ghuman, P. CUDA Optimization of Non-local Means Extended to Wrapped Gaussian Distributions for Interferometric Phase Denoising. Procedia Comput. Sci.
**2016**, 80, 166–177. [Google Scholar] [CrossRef][Green Version] - Mukherjee, S.; Zimmer, A.; Sun, X.; Ghuman, P.; Cheng, I. An Unsupervised Generative Neural Approach for InSAR Phase Filtering and Coherence Estimation. IEEE Geosci. Remote Sens. Lett.
**2020**, 18, 1971–1975. [Google Scholar] [CrossRef] - Imperatore, P.; Pepe, A.; Lanari, R. Multichannel Phase Unwrapping: Problem Topology and Dual-Level Parallel Computational Model. IEEE Trans. Geosci. Remote Sens.
**2015**, 53, 5774–5793. [Google Scholar] [CrossRef] - Imperatore, P.; Pepe, A.; Lanari, R. High-performance parallel computation of the multichannel phase unwrapping problem. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4097–4100. [Google Scholar]
- Huang, Q.; Zhou, H.; Dong, S.; Xu, S. Parallel Branch-Cut Algorithm Based on Simulated Annealing for Large-Scale Phase Unwrapping. IEEE Trans. Geosci. Remote Sens.
**2015**, 53, 3833–3846. [Google Scholar] [CrossRef] - Zhong, H.; Tian, Z.; Huang, P.; Wu, H. A combined phase unwrapping algorithm for InSAR interferogram in shared memory environment. In Proceedings of the 2015 8th International Congress on Image and Signal Processing (CISP), Shenyang, China, 14–16 October 2015; pp. 1504–1509. [Google Scholar]
- Zhenhua, W.; Ma, W.; Long, G.; Li, Y. High performance two-dimensional phase unwrapping on GPUs. In Proceedings of the 11th ACM Conference on Computing Frontiers, Cagliari, Italy, 20–22 May 2014. [Google Scholar]
- Popov, S.E. Improved phase unwrapping algorithm based on NVIDIA CUDA. Program. Comput. Softw.
**2017**, 43, 24–36. [Google Scholar] [CrossRef] - Marinkovic, P.S.; Hanssen, R.F.; Kampes, B.M. Utilization of parallelization algorithms in InSAR/PS-InSAR processing. In Proceedings of the 2004 Envisat & ERS Symposium, Salzburg, Austria, 6–10 September 2004. [Google Scholar]
- Costantini, M.; Ferretti, A. Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data. Remote Sens. Environ.
**2017**, 202, 250–275. [Google Scholar] [CrossRef] - Casu, F.; Elefante, S.; Imperatore, P. SBAS-DInSAR Parallel Processing for Deformation Time-Series Computation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2014**, 7, 3285–3296. [Google Scholar] [CrossRef] - Imperatore, P. Scalable performance analysis of the parallel SBAS-DInSAR algorithm. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 3–18 July 2014; pp. 350–353. [Google Scholar]
- Zhang, W.; You, H.; Tang, Y.; Wang, C.; Zhang, H. High Performance Computing for CS-InSAR Data Processing. In Proceedings of the 2021 SAR in Big Data Era (BIGSARDATA), Nanjing China, 22–24 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, C.; Zhang, H.; You, H.; Zhang, W.; Duan, W.; Wang, J.; Dong, L. Parallel CS-InSAR for Mapping Nationwide Deformation in China. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 3392–3395. [Google Scholar] [CrossRef]
- Duan, W.; Zhang, H.; Wang, C.; Tang, Y. A parallel multi-temporal InSAR method for Sentinel-1 large scale deformation monitoring. In Proceedings of the EUSAR 2021, 13th European Conference on Synthetic Aperture Radar, Online, 29 March–1 April 2021; pp. 1–4. [Google Scholar]
- David, L.; Bookhagen, B.; Valade, S. OSARIS, the “open source SAR investigation system” for automatized parallel InSAR processing of sentinel-1 time series data with special emphasis on cryosphere applications. Front. Earth Sci.
**2019**, 7, 172. [Google Scholar] - Guerriero, A.; Anelli, V.W.; Pagliara, A.; Nutricato, R.; Nitti, D.O. Efficient implementation of InSAR time-consuming algorithm kernels on GPU environment. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4264–4267. [Google Scholar]
- Reza, T.; Zimmer, A.; Blasco, J.M.D.; Ghuman, P.; Aasawat, T.K.; Ripeanu, M. Accelerating Persistent Scatterer Pixel Selection for InSAR Processing. IEEE Trans. Parallel Distrib. Syst.
**2017**, 29, 16–30. [Google Scholar] [CrossRef] - Yu, Y.; Balz, T.; Luo, H.; Liao, M.; Zhang, L. GPU accelerated interferometric SAR processing for Sentinel-1 TOPS data. Comput. Geosci.
**2019**, 129, 12–25. [Google Scholar] [CrossRef] - Costantini, M.; Minati, F.; Ciminelli, M.G.; Ferretti, A.; Costabile, S. Nationwide ground deformation monitoring by persistent scatterer interferometry. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar]
- Haghshenas Haghighi, M.; Motagh, M. Sentinel-1 InSAR over Germany: Large-scale interferometry, atmospheric effects, and ground deformation mapping. ZV: Z. Geodäsie Geoinf. Landmanag.
**2017**, 4, 245–256. [Google Scholar] - Duan, W.; Zhang, H.; Wang, C.; Tang, Y. Multi-Temporal InSAR Parallel Processing for Sentinel-1 Large-Scale Surface Deformation Mapping. Remote Sens.
**2020**, 12, 3749. [Google Scholar] [CrossRef] - Alain, D.; Robert, Y.; Vivien, F. Scheduling and Automatic Parallelization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Galve, J.P.; Pérez-Peña, J.V.; Azañón, J.M.; Closson, D.; Caló, F.; Reyes-Carmona, C.; Jabaloy, A.; Ruano, P.; Mateos, R.M.; Notti, D.; et al. Evaluation of the SBAS InSAR service of the European space Agency’s Geohazard Exploitation Platform (GEP). Remote Sens.
**2017**, 9, 1291. [Google Scholar] [CrossRef][Green Version] - Bru, G.; Ezquerro, P.; Guardiola-Albert, C.; Béjar-Pizarro, M.; Herrera, G.; Tomás, R.; Navarro-Hernández, M.I.; López-Sanchez, J.M.; Ören, A.H.; Çaylak, B.; et al. Land Subsidence Analysis Caused by Aquifer Overexploitation using GEP Tools: A-DInSAR on the Cloud. In Proceedings of the 3rd Congress in Geomatics Engineering, Valencia, Spain, 18–21 October 2021. [Google Scholar] [CrossRef]
- Crosetto, M.; Solari, L.; Mróz, M.; Balasis-Levinsen, J.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A.; Bateson, L.; Guerrieri, L.; et al. The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service. Remote Sens.
**2020**, 12, 2043. [Google Scholar] [CrossRef] - InSAR Norway WebGIS. Available online: https://insar.ngu.no/ (accessed on 30 October 2021).
- Available online: https://bodenbewegungsdienst.bgr.de/ (accessed on 30 October 2021).
- Thollard, F.; Clesse, D.; Doin, M.-P.; Donadieu, J.; Durand, P.; Grandin, R.; Lasserre, C.; Laurent, C.; Deschamps-Ostanciaux, E.; Pathier, E.; et al. FLATSIM: The ForM@Ter LArge-Scale Multi-Temporal Sentinel-1 InterferoMetry Service. Remote Sens.
**2021**, 13, 3734. [Google Scholar] [CrossRef] - Papadopoulos, A.V.; Versluis, L.; Bauer, A.; Herbst, N.; von Kistowski, J.; Ali-Eldin, A.; Abad, C.L.; Amaral, J.N.; Tuma, P.; Iosup, A. Methodological Principles for Reproducible Performance Evaluation in Cloud Computing. IEEE Trans. Softw. Eng.
**2019**, 47, 1528–1543. [Google Scholar] [CrossRef] - Asch, M.; Moore, T.; Badia, R.; Beck, M.; Beckman, P.; Bidot, T.; Bodin, F.; Cappello, F.; Choudhary, A.; de Supinski, B.; et al. Big data and extreme-scale computing: Pathways to Convergence-Toward a shaping strategy for a future software and data ecosystem for scientific inquiry. Int. J. High Perform. Comput. Appl.
**2018**, 32, 435–479. [Google Scholar] [CrossRef] - Chen, Z.; Dongarra, J.; Xu, Z. Post-exascale supercomputing: Research opportunities abound. Front. Inf. Technol. Electron. Eng.
**2018**, 19.10, 1203–1208. [Google Scholar] [CrossRef]

**Figure 1.**Sketch of the interferometric SAR acquisition geometry: ${S}_{1}$ and ${S}_{2}$ represent the two sensor satellites, $b$ is the (spatial) baseline (i.e., the distance between the two satellites), ${b}_{\perp}$ is the perpendicular baseline, and $z$ is the topographic height. The dashed line represents the topographic profile after a ground displacement has happened. The segment highlighted in red represents the projection of the three-dimensional displacement vector along the line-of-sight (LOS).

**Figure 2.**Conceptual InSAR computational scheme for deformation measurements: block diagram of the main processing stages.

**Figure 3.**Sketch of the SAR acquisition mode geometry: (

**a**) Stripmap: the antenna beam is fixed and describe a “strip” on the terrain that corresponds to the imaged area; (

**b**) Terrain Observation by Progressive Scans (TOPS): the acquisition is achieved in bursts by switching the antenna beam among sub-swaths; during each burst the antenna beam also rotates along the azimuth.

**Figure 4.**SAR interferogram shows the ground deformations associated with the Quinghai Mw 7.4 earthquake on 21 May 2021. The interferogram is geocoded and imported into Google Earth.

**Figure 5.**A three-dimensional representation of the vertical (

**left**) and east–west (

**right**) component of the ground displacement related to the Wolf volcano eruption occurred on 25 May 2015. Time-series of the corresponding deformation (cm/year) are also depicted; the red bar indicates the start of the eruption.

**Figure 7.**Hybrid systems: multicore CPUs and GPU (graphical processing unit), with node-to-node connection via the network.

**Figure 8.**Theoretical speedup (Amdahl’s law) as a function of the number of the processing elements for different values of the parallel portion.

**Figure 9.**P-SBAS algorithm applied to COSMO Sky-Med dataset (from [205]): (

**a**) deformation mean-velocity map relevant to the Napoli Bay area is depicted. The graph of the displacement time-series pertinent to a specific pixel located in the area of maximum deformation is also shown; (

**b**) speedup as a function of the number of engaged processors.

Sensor | Frequency | Agency/Country | Access | Revisit-Time | Resolution | Polarization | Frame Size | Year |
---|---|---|---|---|---|---|---|---|

TanDEM-L | L-band (1275 GHz, λ =24.6 cm) | German Aerospace Centre (DLR) | Free and open | 16 days | 7 m | Single, dual, quad mode | dual-pol mode 350 km quad-pol mode: 175 km | ≥2024 |

BIOMASS | P band (435 MHz, λ = 70 cm) | European Space Agency (ESA) | Free and open | 17 days | 60 × 50 m | quad-pol | 50 × 50 km | ≥2023 |

NISAR | S-band (3.2 GHz, λ = 9 cm) | NASA ISRO | Free and open | 12 days | 3–10 m | Single: HH,VV | >240 km | ≥2023 |

Dual: HH/HV, VV/VH | ||||||||

Compact: RH/RV | ||||||||

Quasi-Quad: HH/HV, VH/VV | ||||||||

L-band (1.26 GHz, λ = 24 cm) | Single: HH, VV Dual: HH/HV, VV/VH Compact: RH/RV Quad: HH/HV/VH/VV | |||||||

RCM | C-band (5.4 GHz, λ = 5.6 cm) | Canadian Space Agency | Commercial | Satellite: 12 days Constellation: 4 days | 3–100 m | Single: HH, VV, VH, HV Dual: HH/HV, VV/VH, HH/VV Compact Quad | 20 × 20–500 × 500 km | 2019– |

PAZ SAR | X band (9.65 GHz, λ = 3.5 cm) | Space Agency of Spain | Commercial | 11 days | Stripmap: 3–6 m ScanSAR: 16 × 6 m spotlight: 1–2 m | HH/VV/HV/VH (single or dual) | Stripmap: 30–2000 × 30 km ScanSAR: spotlight: 10 × 10 km | 2018– |

TerraSAR-X Tandem-X | X band (9.65 GHz λ = 3.5 cm) | German Aerospace Centre (DLR) | Commercial; limited proposal-based scientific | 11 days | Spotlight: 0.2 × 1.0–1.7 × 3.5 m Stripmap: 3 × 3 m ScanSAR: 18–40 m | Single: HH, VV Dual: HH/VV, HH/HV, VV/VH Twin: HH/VV, HH/VH,VV/VH | Spotlight: 3–10 km Stripmap: 50 × 3 0 km ScanSAR: 150 × 100- 200 × 200 km | 2007–2010– |

COSMO-SkyMed | X band (9.6 GHz λ = 3.5 cm) | Italian Space Agency (ASI) | Commercial; limited proposal-based scientific | Satellite: 16 days Constellation: 1–8 days | Spotlight: ≤1 m Stripmap: 3–15 m ScanSAR: 30–100 m | Single: HH, VV, HV, VH Dual: HH/HV, HH/VV, VV/VH | Spotlight: 10 × 10 km Stripmap: 40 × 40 km ScanSAR: 100 × 100–200 × 200 km | 2007– |

Sentinel-1 | C band (5.4 GHz, λ = 5.6 cm) | European Space Agency (ESA) | Free and open | Satellite: 12 days Constellation: 6 days | Stripmap: 5 × 5 m Interferometric Wide Swath (IW): 5 × 2 0m Extra Wide Swath (EW): 20–40 m | Single: HH, VV Dual: HH/HV, VV/VH | Stripmap: 375 km IW: 250 km EW: 400 km | 2014– |

RADARSAT-2 | C band (5.4 GHz, λ = 5.6 cm) | Canadian Space Agency | Commercial | 24 days | Spotlight: ~1.5 m Stripmap: ~3 × 3–25 × 25 m ScanSAR: 35 × 35–100 × 100 m | Single: HH, VV, HV, VH Dual: HH/HV, VV/VH Quad: HH/HV/VH/VV | Spotlight: 18 × 8 km Stripmap: 20–17 0 m ScanSAR: 300 × 300–500 × 500 km | 2007– |

SAOCOM | L band (1275 GHz, λ = 24.6 cm) | Argentina National Space Activities Commission (CONAE) | Commercial; limited proposal-based scientific | Satellite: 16 days Constellation: 8 day | Stripmap: 10 × 10 m TopSAR: 100 × 100 m | Single: HH, VV Dual: HH/HV, VV/VH Quad: HH/HV/VH/VV | Stripmap: >65 km TopSAR: 320 km | 2018– |

ALOS-2PALSAR-2 | L band (1275 GHz, λ = 24.6 cm) | Japan Aerospace Exploration Agency (JAXA) | Commercial; limited proposal-based scientific | 14 days | Spotlight: 1 × 3 m Stripmap: 3–10 m ScanSAR: 25–100 m | Single: HH, VV, HV, VH Dual: HH/HV, VV/VH Quad: HH/HV/VH/VV | Spotlight: 25 × 25 km Stripmap: 55 × 70–70 × 70 km ScanSAR: 355 × 355 km | 2014– |

Processing Stage | Selected Works | Parallelism | Tools | Year |
---|---|---|---|---|

Focusing | [181,182] | Multithreading | OpenMP | 2016 |

[183,184] | GPU-based | OpenCL | 2019 | |

[185] | GPU-based | CUDA | 2020 | |

[188] | GPU-based | CUDA | 2014 | |

[186] | GPUs + CPUs | CUDA/OpenMP | 2016 | |

[189] | multi-GPU | CUDA/MPI | 2018 | |

[187] | GPU-based | CUDA | 2016 | |

Coregistration | [190] | Multiprocessing | MPI | 2002 |

[49] | Multithreading | OpenMP | 2021 | |

[191] | GPU-based | CUDA | 2014 | |

[192] | GPU-based | CUDA | 2020 | |

Phase Unwrapping | [198] | Dual-level | MPI/OpenMP | 2015 |

[196,197] | Dual-level | MP/OpenMP | 2015 | |

[199] | Multithreading | OpenMP | 2015 | |

[200] | GPU-based | CUDA | 2014 | |

[201] | GPU-based | CUDA | 2017 | |

InSAR Filtering | [190] | Multiprocessing | MPI | 2015 |

[194] | GPU-based | CUDA | 2016 | |

[195] | GPU-based | OpenCL | 2020 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Imperatore, P.; Pepe, A.; Sansosti, E.
High Performance Computing in Satellite SAR Interferometry: A Critical Perspective. *Remote Sens.* **2021**, *13*, 4756.
https://doi.org/10.3390/rs13234756

**AMA Style**

Imperatore P, Pepe A, Sansosti E.
High Performance Computing in Satellite SAR Interferometry: A Critical Perspective. *Remote Sensing*. 2021; 13(23):4756.
https://doi.org/10.3390/rs13234756

**Chicago/Turabian Style**

Imperatore, Pasquale, Antonio Pepe, and Eugenio Sansosti.
2021. "High Performance Computing in Satellite SAR Interferometry: A Critical Perspective" *Remote Sensing* 13, no. 23: 4756.
https://doi.org/10.3390/rs13234756