Mapping High Spatiotemporal-Resolution Soil Moisture by Upscaling Sparse Ground-Based Observations Using a Bayesian Linear Regression Method for Comparison with Microwave Remotely Sensed Soil Moisture Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.3.1. Upscaling Algorithm
2.3.2. Determination of Samples of the Upscaled SM
2.3.3. Performance Metrics
3. Results
3.1. Obtaining Samples of the Upscaled SM
3.2. Upscaling Ground-Based SM Observations
3.3. Validation of the Upscaled SM
3.4. Comparisons between the Upscaled SM and Microwave Remotely Sensed SM Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GCOS. Implementation plan for the global observing system for climate in support of the UNFCCC (2010 Update). In Proceedings of the Conference of the Parties (COP), Copenhagen, Denmark, 7–18 December 2010. [Google Scholar]
- Brocca, L.; Melone, F.; Moramarco, T.; Wagner, W.; Naeimi, V.; Bartalis, Z.; Hasenauer, S. Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol. Earth Syst. Sci. 2010, 14, 1881. [Google Scholar] [CrossRef] [Green Version]
- Massari, C.; Brocca, L.; Moramarco, T.; Tramblay, Y.; Lescot, J.-F.D. Potential of soil moisture observations in flood modelling: Estimating initial conditions and correcting rainfall. Adv. Water Res. 2014, 74, 44–53. [Google Scholar] [CrossRef]
- Hunt, K.M.R.; Turner, A.G. The effect of soil moisture perturbations on indian monsoon depressions in a numerical weather prediction model. J. Clim. 2017, 30, 8811–8823. [Google Scholar] [CrossRef]
- Dharssi, I.; Bovis, K.J.; Macpherson, B.; Jones, C.P. Operational assimilation of ASCAT surface soil wetness at the met office. Hydrol. Earth Syst. Sci. 2011, 15, 2729–2746. [Google Scholar] [CrossRef] [Green Version]
- McNairn, H.; Merzouki, A.; Pacheco, A.; Fitzmaurice, J. Monitoring soil moisture to support risk reduction for the agriculture sector using radarsat-2. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 824–834. [Google Scholar] [CrossRef]
- Bolten, J.D.; Crow, W.T.; Zhan, X.; Jackson, T.J.; Reynolds, C.A. Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 3, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; de Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Justice, C.; Belward, A.; Morisette, J.; Lewis, P.; Privette, J.; Baret, F. Developments in the ‘validation’ of satellite sensor products for the study of the land surface. Int. J. Remote Sens. 2000, 21, 3383–3390. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; van der Sande, C.J.; Grootaers, I.; Feyen, J. Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sens. Environ. 2006, 101, 299–314. [Google Scholar] [CrossRef]
- Merlin, O.; Walker, J.P.; Chehbouni, A.; Kerr, Y. Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency. Remote Sens. Environ. 2008, 112, 3935–3946. [Google Scholar] [CrossRef] [Green Version]
- Clewley, D.; Whitcomb, J.; Akbar, R.; Silva, A.; Berg, A.; Adams, J.; Caldwell, T.; Entekhabi, D.; Moghaddam, M. A method for upscaling in situ soil moisture measurements to satellite footprint scale using random forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2663–2673. [Google Scholar] [CrossRef]
- Reichle, R.H.; Koster, R.D. Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Albergel, C.; Dutra, E.; Munier, S.; Calvet, J.C.; Munoz-Sabater, J.; de Rosnay, P.; Balsamo, G. Era-5 and era-interim driven isba land surface model simulations: Which one performs better? Hydrol. Earth Syst. Sci. 2018, 22, 3515–3532. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Houser, P.; Jambor, U.E.A.; Gottschalck, J.; Mitchell, K.; Meng, J.; Arsenault, K.; Brian, C.; Radakovich, J.; Mg, B.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Al-Yaari, A.; Wigneron, J.-P.; Ducharne, A.; Kerr, Y.; Wagner, W.; De Lannoy, G.; Reichle, R.; Al Bitar, A.; Dorigo, W.; Richaume, P. Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land). Remote Sens. Environ. 2014, 152, 614–626. [Google Scholar] [CrossRef] [Green Version]
- Al-Yaari, A.; Wigneron, J.P.; Ducharne, A.; Kerr, Y.; de Rosnay, P.; de Jeu, R.; Govind, A.; Al Bitar, A.; Albergel, C.; Muñoz-Sabater, J.; et al. Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to land data assimilation system estimates. Remote Sens. Environ. 2014, 149, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Hain, C.R.; Zhan, X.; Anderson, M.C. An inter-comparison of soil moisture data products from satellite remote sensing and a land surface model. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 37–50. [Google Scholar] [CrossRef]
- Nykanen, D.K.; Foufoula-Georgiou, E. Soil moisture variability and scale-dependency of nonlinear parameterizations in coupled land–atmosphere models. Adv. Water Res. 2001, 24, 1143–1157. [Google Scholar] [CrossRef]
- Burgin, M.S.; Colliander, A.; Njoku, E.G.; Chan, S.K.; Cabot, F.; Kerr, Y.H.; Bindlish, R.; Jackson, T.J.; Entekhabi, D.; Yueh, S.H. A comparative study of the SMAP passive soil moisture product with existing satellite-based soil moisture products. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- Tugrul Yilmaz, M.; Crow, W. Evaluation of assumptions in soil moisture triple collocation analysis. J. Hydrometeorol. 2014, 15, 1293–1302. [Google Scholar] [CrossRef]
- McColl, K.A.; Vogelzang, J.; Konings, A.G.; Entekhabi, D.; Piles, M.; Stoffelen, A. Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophys. Res. Lett. 2014, 41, 6229–6236. [Google Scholar] [CrossRef] [Green Version]
- Gruber, A.; Su, C.H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W. Recent advances in (soil moisture) triple collocation analysis. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 200–211. [Google Scholar] [CrossRef]
- Draper, C.; Reichle, R.; de Jeu, R.; Naeimi, V.; Parinussa, R.; Wagner, W. Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sens. Environ. 2013, 137, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.; Scipal, K.; Parinussa, R.; Liu, Y.; Wagner, W.; De Jeu, R.; Naeimi, V. Error characterisation of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci. 2010, 14, 2605–2616. [Google Scholar] [CrossRef] [Green Version]
- Gruber, A.; Su, C.H.; Crow, W.T.; Zwieback, S.; Dorigo, W.A.; Wagner, W. Estimating error cross-correlations in soil moisture data sets using extended collocation analysis. J. Geophys. Res. Atmos. 2016, 121, 1208–1219. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Jin, R.; Li, X.; Ma, C.; Qin, J.; Zhang, Y. High spatio-temporal resolution mapping of soil moisture by integrating wireless sensor network observations and modis apparent thermal inertia in the babao river basin, China. Remote Sens. Environ. 2017, 191, 232–245. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Jin, R.; Li, X.; Zhang, Y. Error decomposition of remote sensing soil moisture products based on the triple-collocation method introducing an unbiased reference dataset: A case study on the tibetan plateau. Remote Sens. 2020, 12, 3087. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; Oevelen, P.V. The international soil moisture network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.E.; Palecki, M.A.; Baker, C.B.; Collins, W.G.; Lawrimore, J.H.; Leeper, R.D.; Hall, M.E.; Kochendorfer, J.; Meyers, T.P.; Wilson, T.; et al. U.S. Climate reference network soil moisture and temperature observations. J. Hydrometeorol. 2013, 14, 977–988. [Google Scholar] [CrossRef]
- Smith, A.B.; Walker, J.P.; Western, A.W.; Young, R.I.; Ellett, K.M.; Pipunic, R.C.; Grayson, R.B.; Siriwardena, L.; Chiew, F.H.S.; Richter, H. The murrumbidgee soil moisture monitoring network data set. Water Resour. Res. 2012, 48, 1–6. [Google Scholar] [CrossRef]
- Tagesson, T.; Fensholt, R.; Guiro, I.; Rasmussen, M.O.; Huber, S.; Mbow, C.; Garcia, M.; Horion, S.; Sandholt, I.; Holm-Rasmussen, B.; et al. Ecosystem properties of semiarid savanna grassland in west Africa and its relationship with environmental variability. Glob. Chang. Biol. 2015, 21, 250–264. [Google Scholar] [CrossRef] [Green Version]
- Zacharias, S.; Bogena, H.; Samaniego, L.; Mauder, M.; Fuß, R.; Pütz, T.; Frenzel, M.; Schwank, M.; Baessler, C.; Butterbach-Bahl, K.; et al. A network of terrestrial environmental observatories in Germany. Vadose Zone J. 2011, 10, 955–973. [Google Scholar] [CrossRef] [Green Version]
- Calvet, J.; Fritz, N.; Froissard, F.; Suquia, D.; Petitpa, A.; Piguet, B. In situ soil moisture observations for the CAL/VAL of SMOS: The smosmania network. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 1196–1199. [Google Scholar]
- Su, Z.; Wen, J.; Dente, L.; Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. The Tibetan plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol. Earth Syst. Sci. 2011, 15, 2303–2316. [Google Scholar] [CrossRef] [Green Version]
- Gruber, A.; Dorigo, W.A.; Zwieback, S.; Xaver, A.; Wagner, W. Characterizing coarse-scale representativeness of in situ soil moisture measurements from the international soil moisture network. Vadose Zone J. 2013, 12, vzj2012.0170. [Google Scholar] [CrossRef] [Green Version]
- De Rosnay, P.; Gruhier, C.; Timouk, F.; Baup, F.; Mougin, E.; Hiernaux, P.; Kergoat, L.; LeDantec, V. Multi-scale soil moisture measurements at the Gourma meso-scale site in Mali. J. Hydrol. 2009, 375, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Gruhier, C.; de Rosnay, P.; Hasenauer, S.; Holmes, T.; de Jeu, R.; Kerr, Y.; Mougin, E.; Njoku, E.; Timouk, F.; Wagner, W.; et al. Soil moisture active and passive microwave products: Intercomparison and evaluation over a Sahelian site. Hydrol. Earth Syst. Sci. 2010, 14, 141–156. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Yang, K.; Lu, N.; Chen, Y.; Zhao, L.; Han, M. Spatial upscaling of in-situ soil moisture measurements based on Modis-derived apparent thermal inertia. Remote Sens. Environ. 2013, 138, 1–9. [Google Scholar] [CrossRef]
- Gao, S.; Zhu, Z.; Haiteng, W.; Zhang, J. Upscaling of sparse in situ soil moisture observations by integrating auxiliary information from remote sensing. Int. J. Remote Sens. 2017, 38, 4782–4803. [Google Scholar] [CrossRef]
- Kang, J.; Jin, R.; Li, X.; Zhang, Y.; Zhu, Z. Spatial upscaling of sparse soil moisture observations based on ridge regression. Remote Sens. 2018, 10, 192. [Google Scholar] [CrossRef] [Green Version]
- Jin, R.; Li, X.; Yan, B.; Li, X.; Luo, W.; Ma, M.; Guo, J.; Kang, J.; Zhu, Z.; Zhao, S. A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe river basin, china. Geosci. Remote Sens. Lett. IEEE 2014, 11, 2015–2019. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L.; et al. The Heihe integrated observatory network: A basin-scale land surface processes observatory in china. Vadose Zone J. 2018, 17, 180072. [Google Scholar] [CrossRef]
- O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R.; Chaubell, J. SMAP L3 Radiometer Global Daily 36 km Ease-Grid Soil Moisture, Version 6; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2019. [Google Scholar]
- O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R.; Chaubell, J. SMAP Enhanced L3 Radiometer Global Daily 9 km Ease-grid Soil Moisture, Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2019. [Google Scholar]
- Fujii, H.; Koike, T.; Imaoka, K. Improvement of the Amsr-E algorithm for soil moisture estimation by introducing a fractional vegetation coverage dataset derived from Modis data. J. Remote Sens. Soc. Jpn. 2009, 29, 282–292. [Google Scholar]
- Owe, M.; de Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. Earth Surf. 2008, 113. [Google Scholar] [CrossRef]
- De Jeu, R.; Owe, M. AMSR2/GCOM-W1 Surface Soil Moisture (LPRM) L3 1 Day 25 km × 25 km Ascending/Descending v001; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2014. [Google Scholar]
- Al Bitar, A.; Mialon, A.; Kerr, Y.H.; Cabot, F.; Richaume, P.; Jacquette, E.; Quesney, A.; Mahmoodi, A.; Tarot, S.; Parrens, M.; et al. The global SMOS level 3 daily soil moisture and brightness temperature maps. Earth Syst. Sci. Data 2017, 9, 293–315. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Moran, R.; Al-Yaari, A.; Mialon, A.; Mahmoodi, A.; Al Bitar, A.; De Lannoy, G.; Lopez-Baeza, E.; Kerr, Y.; Wigneron, J.-P. SMOS-IC: An alternative SMOS soil moisture and vegetation optical depth product. Remote Sens. 2017, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI soil moisture for improved earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Gruber, A.; Scanlon, T.; van der Schalie, R.; Wagner, W.; Dorigo, W. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 2019, 11, 717–739. [Google Scholar] [CrossRef] [Green Version]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50, RG2002. [Google Scholar] [CrossRef] [Green Version]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Holzman, M.E.; Rivas, R.; Bayala, M. Subsurface soil moisture estimation by VI–LST method. Geosci. Remote Sens. Lett. IEEE 2014, 11, 1951–1955. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2018, 204, 931–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yee, M.S.; Walker, J.P.; Rüdiger, C.; Parinussa, R.M.; Koike, T.; Kerr, Y.H. A comparison of smos and amsr2 soil moisture using representative sites of the OZNET monitoring network. Remote Sens. Environ. 2017, 195, 297–312. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, J.; Chen, N.; Zhang, X.; Cosh, M.H.; Wang, W. Satellite surface soil moisture from SMAP, SMOS, amsr2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sens. Environ. 2019, 231, 111215. [Google Scholar] [CrossRef]
Product | Frequency (GHz) | Grid Spacing | Version |
---|---|---|---|
SMAP_L3_SM_P | 1.41 | 36 km | v006 |
SMAP_L3_SM_E | 1.4 | 9 km | v003 |
SMOS_L3 | 1.4 | 25 km | v300 |
SMOS-IC | 1.4 | 25 km | v105 |
AMSR2_JAXA | 10.65/36.5 | 0.25° | v300 |
AMSR2_NASA_X | 10.65 | 0.25° | v001 |
CCI | 1.4, 5.3, 6.6, 6.8, 6.9, 10.65, and 19.3 | 0.25° | v4.7/v5.2 |
Year | 2015 | 2016 | 2017 | |||
---|---|---|---|---|---|---|
Station | R | ubRMSE | R | ubRMSE | R | ubRMSE |
WSN-01 | 0.883 | 0.028 | —— | —— | —— | —— |
WSN-04 | 0.654 | 0.042 | 0.919 | 0.026 | —— | —— |
WSN-05 | 0.630 | 0.056 | 0.616 | 0.060 | —— | —— |
WSN-06 | 0.920 | 0.012 | 0.668 | 0.041 | 0.644 | 0.053 |
WSN-12 | 0.622 | 0.036 | 0.794 | 0.029 | —— | —— |
WSN-16 | —— | —— | 0.692 | 0.025 | 0.864 | 0.008 |
WSN-25 | 0.794 | 0.018 | 0.845 | 0.020 | 0.793 | 0.024 |
WSN-35 | 0.535 | 0.057 | 0.875 | 0.010 | 0.652 | 0.047 |
WSN-36 | —— | —— | 0.880 | 0.030 | —— | —— |
WSN-37 | 0.493 | 0.029 | 0.259 | 0.038 | —— | —— |
WSN-40 | 0.865 | 0.017 | 0.724 | 0.026 | 0.887 | 0.027 |
Year | 2015 | 2016 | 2017 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Index | RMSE | ubRMSE | Bias | r | RMSE | ubRMSE | Bias | r | RMSE | ubRMSE | Bias | r |
Grid | SMAP_L3_SM_P | |||||||||||
No.1 | 0.097 | 0.023 | −0.095 | 0.519 | 0.085 | 0.026 | −0.081 | 0.710 | 0.073 | 0.026 | −0.068 | 0.641 |
No.2 | 0.132 | 0.019 | −0.130 | 0.556 | 0.117 | 0.025 | −0.115 | 0.728 | 0.110 | 0.023 | −0.108 | 0.677 |
No.3 | 0.040 | 0.038 | −0.014 | 0.363 | 0.033 | 0.033 | 0.002 | 0.715 | 0.038 | 0.036 | 0.011 | 0.579 |
Grid | SMAP_L3_SM_P_E | |||||||||||
No.1 | 0.075 | 0.025 | −0.070 | 0.501 | 0.063 | 0.028 | −0.056 | 0.709 | 0.054 | 0.028 | −0.046 | 0.619 |
No.2 | 0.115 | 0.021 | −0.113 | 0.487 | 0.100 | 0.024 | −0.097 | 0.752 | 0.094 | 0.024 | −0.090 | 0.669 |
No.3 | 0.040 | 0.036 | −0.016 | 0.375 | 0.031 | 0.031 | −0.003 | 0.723 | 0.035 | 0.034 | 0.007 | 0.609 |
Grid | SMOS_IC | |||||||||||
No.1 | 0.119 | 0.077 | −0.091 | 0.356 | 0.114 | 0.080 | −0.081 | 0.311 | 0.102 | 0.078 | −0.065 | 0.269 |
No.2 | 0.079 | 0.060 | −0.050 | 0.475 | 0.068 | 0.063 | −0.024 | 0.611 | 0.089 | 0.087 | −0.021 | 0.234 |
No.3 | 0.112 | 0.086 | −0.072 | 0.045 | 0.098 | 0.090 | −0.040 | 0.277 | 0.104 | 0.074 | −0.073 | 0.413 |
No.4 | 0.094 | 0.077 | −0.054 | 0.089 | 0.093 | 0.086 | −0.037 | 0.294 | 0.105 | 0.102 | −0.026 | 0.343 |
Grid | SMOS_L3 | |||||||||||
No.1 | 0.136 | 0.105 | −0.087 | 0.033 | 0.109 | 0.094 | −0.056 | 0.349 | 0.085 | 0.081 | −0.026 | 0.371 |
No.2 | 0.129 | 0.128 | 0.020 | 0.033 | 0.125 | 0.123 | 0.022 | 0.201 | 0.101 | 0.098 | 0.027 | 0.155 |
No.3 | 0.121 | 0.115 | −0.038 | −0.214 | 0.094 | 0.090 | 0.026 | 0.272 | 0.114 | 0.112 | 0.020 | -0.116 |
No.4 | 0.123 | 0.120 | −0.026 | −0.217 | 0.093 | 0.092 | 0.016 | 0.565 | 0.134 | 0.121 | 0.058 | 0.108 |
Grid | AMSR2_JAXA | |||||||||||
No.1 | 0.095 | 0.075 | 0.058 | −0.026 | 0.113 | 0.076 | 0.084 | 0.097 | 0.093 | 0.072 | 0.059 | 0.109 |
No.2 | 0.090 | 0.076 | 0.047 | 0.053 | 0.112 | 0.075 | 0.083 | 0.130 | 0.086 | 0.067 | 0.053 | 0.070 |
No.3 | 0.097 | 0.075 | 0.062 | 0.013 | 0.132 | 0.091 | 0.096 | −0.036 | 0.093 | 0.067 | 0.065 | 0.079 |
No.4 | 0.119 | 0.071 | 0.095 | 0.206 | 0.143 | 0.078 | 0.120 | 0.014 | 0.115 | 0.060 | 0.098 | 0.100 |
Grid | AMSR2_NASA_X | |||||||||||
No.1 | 0.140 | 0.089 | 0.107 | 0.384 | 0.141 | 0.084 | 0.113 | 0.674 | 0.151 | 0.096 | 0.116 | 0.488 |
No.2 | 0.121 | 0.090 | 0.081 | 0.460 | 0.125 | 0.090 | 0.087 | 0.675 | 0.139 | 0.090 | 0.105 | 0.384 |
No.3 | 0.138 | 0.082 | 0.110 | 0.417 | 0.135 | 0.088 | 0.102 | 0.575 | 0.134 | 0.075 | 0.111 | 0.553 |
No.4 | 0.137 | 0.080 | 0.111 | 0.436 | 0.144 | 0.085 | 0.115 | 0.622 | 0.147 | 0.077 | 0.125 | 0.500 |
Grid | CCI_SM_v4.7 | |||||||||||
No.1 | 0.119 | 0.035 | −0.113 | 0.579 | 0.088 | 0.039 | −0.079 | 0.700 | 0.095 | 0.046 | −0.084 | 0.515 |
No.2 | 0.102 | 0.029 | −0.098 | 0.598 | 0.074 | 0.035 | −0.066 | 0.767 | 0.072 | 0.042 | −0.058 | 0.493 |
No.3 | 0.106 | 0.035 | −0.100 | 0.574 | 0.080 | 0.035 | −0.072 | 0.777 | 0.085 | 0.041 | −0.074 | 0.632 |
No.4 | 0.098 | 0.036 | −0.091 | 0.498 | 0.072 | 0.036 | −0.062 | 0.774 | 0.078 | 0.043 | −0.065 | 0.579 |
Grid | CCI_SM_v5.2 | |||||||||||
No.1 | 0.111 | 0.028 | −0.108 | 0.548 | 0.084 | 0.035 | −0.077 | 0.683 | 0.085 | 0.039 | −0.075 | 0.560 |
No.2 | 0.089 | 0.034 | −0.082 | 0.472 | 0.065 | 0.036 | −0.054 | 0.705 | 0.059 | 0.040 | −0.043 | 0.552 |
No.3 | 0.108 | 0.035 | −0.103 | 0.456 | 0.078 | 0.031 | −0.072 | 0.783 | 0.087 | 0.038 | −0.078 | 0.634 |
No.4 | 0.094 | 0.037 | −0.087 | 0.399 | 0.066 | 0.034 | −0.057 | 0.764 | 0.070 | 0.040 | −0.058 | 0.641 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Jin, R.; Li, X.; Zhang, Y. Mapping High Spatiotemporal-Resolution Soil Moisture by Upscaling Sparse Ground-Based Observations Using a Bayesian Linear Regression Method for Comparison with Microwave Remotely Sensed Soil Moisture Products. Remote Sens. 2021, 13, 228. https://doi.org/10.3390/rs13020228
Kang J, Jin R, Li X, Zhang Y. Mapping High Spatiotemporal-Resolution Soil Moisture by Upscaling Sparse Ground-Based Observations Using a Bayesian Linear Regression Method for Comparison with Microwave Remotely Sensed Soil Moisture Products. Remote Sensing. 2021; 13(2):228. https://doi.org/10.3390/rs13020228
Chicago/Turabian StyleKang, Jian, Rui Jin, Xin Li, and Yang Zhang. 2021. "Mapping High Spatiotemporal-Resolution Soil Moisture by Upscaling Sparse Ground-Based Observations Using a Bayesian Linear Regression Method for Comparison with Microwave Remotely Sensed Soil Moisture Products" Remote Sensing 13, no. 2: 228. https://doi.org/10.3390/rs13020228
APA StyleKang, J., Jin, R., Li, X., & Zhang, Y. (2021). Mapping High Spatiotemporal-Resolution Soil Moisture by Upscaling Sparse Ground-Based Observations Using a Bayesian Linear Regression Method for Comparison with Microwave Remotely Sensed Soil Moisture Products. Remote Sensing, 13(2), 228. https://doi.org/10.3390/rs13020228