Pattern of Turbidity Change in the Middle Reaches of the Yarlung Zangbo River, Southern Tibetan Plateau, from 2007 to 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. In Situ Measurement
2.2.2. Remote Sensing Imagery
2.2.3. Auxiliary Data
2.3. Turbidity Models
2.4. Turbidity Pattern Analysis
3. Results
3.1. Turbidity and Spectral Signatures of the YZR
3.2. Turbidity Models
3.3. Turbidity Patterns
3.3.1. Spatial Pattern of Turbidity Change in the YZR
3.3.2. Temporal Pattern of Turbidity Change in the YZR
3.4. Turbidity Change with Environmental Factors
3.4.1. Turbidity Change with Precipitation
3.4.2. Turbidity Changes with Normalized Difference Vegetation Index (NDVI)
4. Discussion
4.1. Turbidity Models
4.2. Effects of Tributaries
4.3. Effects of Precipitations
4.4. Effects of Vegetations
5. Conclusions
- (1)
- The reflectance ratio of the red and green bands is identified as the most sensitive spectral signature based on the in situ measurements. The s-curve model has the best performance for turbidity estimation in the YZR due to its relatively higher R2, lower RMS and MRE values, and robustness at different turbidity levels;
- (2)
- Turbidity tends to decrease from the upper to the lower sections and the high turbidity occurs in the upper section and the widest section of the YZR. Seasonal variations are observed with relatively high turbidity from July to September and low turbidity from October to the next May. Turbidity fluctuates over years with a slightly temporal declining trend from 2007 to 2017;
- (3)
- The spatial turbidity change is affected by the confluence of major tributaries that bring additional sediments to the mainstream. Lhasa River has more significant impacts on the mainstream turbidity than Nyang River due to its high turbidity levels;
- (4)
- Precipitation is an important factor influencing the turbidity of the YZR, especially in the upper and middle sections. We found a lag of approximately one month for the effect of precipitation on turbidity. We also found the impact of precipitation type on turbidity change. Rainfall shows a positive correlation with turbidity in most stream sections. Snowfall, on the other hand, presents a slightly negative correlation with turbidity;
- (5)
- Vegetation plays a vital role in reducing turbidity at the upper and middle sections where vegetation coverage is limited.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Fang, X.; Ma, H.; Zhu, J.; Pan, B.; Chen, H. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic. Sci. China Ser. D Earth Sci. 1996, 39, 380–390. [Google Scholar]
- Li, Y.; Liao, J.; Guo, H.; Liu, Z.; Shen, G. Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972–2010. PLoS ONE 2014, 9, e111890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, C.; Liu, B.; Xu, Y.; Li, Y.; Li, H. Effect of topography and protecting barriers on revegetation of sandy land, Southern Tibetan Plateau. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xie, H.; Kang, S.; Yi, D.; Ackley, S.F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 2011, 115, 1733–1742. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Gao, Y.; Zou, C.; Yan, S.; Gao, J. Human impact on vegetation dynamics around Lhasa, southern Tibetan plateau, China. Sustainability 2016, 8, 1146. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Zhang, F.; Lu, X.; Wang, G.; Gong, T. Improving sediment load estimations: The case of the Yarlung Zangbo River (the upper Brahmaputra, Tibet Plateau). Catena 2018, 160, 201–211. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L.; Richards, K.S. Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 26–37. [Google Scholar] [CrossRef]
- Philpot, W.; Klemas, V. Remote Sensing of Coastal Pollutants Using Multispectral Data. In Proceedings of the Annual William T. Pecora Memorial Symposium on Remote Sensing, Sioux Falls, SD, USA, 10–15 January 1979. [Google Scholar]
- Ruhl, C.; Schoellhamer, D.; Stumpf, R.; Lindsay, C. Combined use of remote sensing and continuous monitoring to analyse the variability of suspended-sediment concentrations in San Francisco Bay, California. Estuar. Coast. Shelf Sci. 2001, 53, 801–812. [Google Scholar] [CrossRef]
- Shafique, N.A.; Fulk, F.; Autrey, B.C.; Flotemersch, J. Hyperspectral remote sensing of water quality parameters for large rivers in the Ohio River basin. In Proceedings of the First Interagency Conference on Research in the Watershed, Benson, AZ, USA, 27–30 October 2003; pp. 216–221. [Google Scholar]
- Fraser, R. Multispectral remote sensing of turbidity among Nebraska Sand Hills lakes. Int. J. Remote Sens. 1998, 19, 3011–3016. [Google Scholar] [CrossRef]
- Yu, X.; Lee, Z.; Shen, F.; Wang, M.; Wei, J.; Jiang, L.; Shang, Z. An empirical algorithm to seamlessly retrieve the concentration of suspended particulate matter from water color across ocean to turbid river mouths. Remote Sens. Environ. 2019, 235, 111491. [Google Scholar] [CrossRef]
- Liu, Y.; Islam, M.A.; Gao, J. Quantification of shallow water quality parameters by means of remote sensing. Prog. Phys. Geogr. 2003, 27, 24–43. [Google Scholar] [CrossRef]
- Kilham, N.E.; Roberts, D.; Singer, M.B. Remote sensing of suspended sediment concentration during turbid flood conditions on the Feather River, California—A modeling approach. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Petus, C.; Chust, G.; Gohin, F.; Doxaran, D.; Froidefond, J.-M.; Sagarminaga, Y. Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery. Cont. Shelf Res. 2010, 30, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Güttler, F.N.; Niculescu, S.; Gohin, F. Turbidity retrieval and monitoring of Danube Delta waters using multi-sensor optical remote sensing data: An integrated view from the delta plain lakes to the western–northwestern Black Sea coastal zone. Remote Sens. Environ. 2013, 132, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Kallio, K.; Attila, J.; Härmä, P.; Koponen, S.; Pulliainen, J.; Hyytiäinen, U.-M.; Pyhälahti, T. Landsat ETM+ images in the estimation of seasonal lake water quality in boreal river basins. Environ. Manag. 2008, 42, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hu, C.; Muller-Karger, F. Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sens. Environ. 2007, 109, 207–220. [Google Scholar] [CrossRef]
- Shen, F.; Suhyb Salama, M.; Zhou, Y.-X.; Li, J.-F.; Su, Z.; Kuang, D.-B. Remote-sensing reflectance characteristics of highly turbid estuarine waters—A comparative experiment of the Yangtze River and the Yellow River. Int. J. Remote Sens. 2010, 31, 2639–2654. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.-M.; Lavender, S.; Castaing, P. Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens. Environ. 2002, 81, 149–161. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Melesse, A. Study on spatiotemporal variability of water quality parameters in Florida Bay using remote sensing. J. Remote Sens. GIS 2017, 6, 1–11. [Google Scholar] [CrossRef]
- Hellweger, F.; Schlosser, P.; Lall, U.; Weissel, J. Use of satellite imagery for water quality studies in New York Harbor. Estuar. Coast. Shelf Sci. 2004, 61, 437–448. [Google Scholar] [CrossRef]
- Chen, S.; Fang, L.; Zhang, L.; Huang, W. Remote sensing of turbidity in seawater intrusion reaches of Pearl River Estuary–A case study in Modaomen water way, China. Estuar. Coast. Shelf Sci. 2009, 82, 119–127. [Google Scholar] [CrossRef]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mingyue, H.; Linjuan, P.; Dingzhi, Z.; Linghua, Q. Spatial interpolation of meteorological variables in yarlung zangbo river basin. J. Beijing Norm. Univ. (Nat. Sci.) 2012, 48, 449–452. [Google Scholar]
- Zheng, W.; Kang, S.; Feng, X.; Zhang, Q.; Li, C. Mercury speciation and spatial distribution in surface waters of the Yarlung Zangbo River, Tibet. Chin. Sci. Bull. 2010, 55, 2697–2703. [Google Scholar] [CrossRef]
- Nan, S.; Li, J.; Zhang, L.; An, R.; Pu, X.; Huang, W. Distribution Characteristics of Phosphorus in the Yarlung Zangbo River Basin. Water 2018, 10, 913. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Sillanpää, M.; Gjessing, E.; Peräniemi, S.; Vogt, R. Water quality in the southern Tibetan Plateau: Chemical evaluation of the Yarlung Tsangpo (Brahmaputra). River Res. Appl. 2011, 27, 113–121. [Google Scholar] [CrossRef]
- Huang, X.; Sillanpää, M.; Duo, B.; Gjessing, E.T. Water quality in the Tibetan Plateau: Metal contents of four selected rivers. Environ. Pollut. 2008, 156, 270–277. [Google Scholar] [CrossRef]
- Huang, Z.; Lin, B.; Sun, J.; Luozhu, N.; Da, P.; Dawa, J. Suspended Sediment Transport Responses to Increasing Human Activities in a High-Altitude River: A Case Study in a Typical Sub-Catchment of the Yarlung Tsangpo River. Water 2020, 12, 952. [Google Scholar] [CrossRef] [Green Version]
- Ming-Hui, H.; Stallard, R.; Edmond, J. Major ion chemistry of some large Chinese rivers. Nature 1982, 298, 550–553. [Google Scholar] [CrossRef]
- Huang, X.; Sillanpää, M.; Gjessing, E.T.; Vogt, R.D. Water quality in the Tibetan Plateau: Major ions and trace elements in the headwaters of four major Asian rivers. Sci. Total Environ. 2009, 407, 6242–6254. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, F.; Lu, X.; Wang, Z.; Gong, T.; Wang, G.; Zhang, H. Spatiotemporal variations of suspended sediment transport in the upstream and midstream of the Yarlung Tsangpo River (the upper Brahmaputra), China. Earth Surf. Process. Landf. 2018, 43, 432–443. [Google Scholar] [CrossRef]
- Zhang, Y.; Sillanpää, M.; Li, C.; Guo, J.; Qu, B.; Kang, S. River water quality across the Himalayan regions: Elemental concentrations in headwaters of Yarlung Tsangbo, Indus and Ganges River. Environ. Earth Sci. 2015, 73, 4151–4163. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Shen, W.; Li, Y.; Lin, J.; Lu, X.; Xu, X.; Jiang, J. Elevation-dependent vegetation greening of the Yarlung Zangbo River basin in the southern Tibetan Plateau, 1999–2013. Remote Sens. 2015, 7, 16672–16687. [Google Scholar] [CrossRef] [Green Version]
- Chettri, N.; Tsering, K.; Shrestha, A.; Sharma, E. Ecological vulnerability to climate change in the mountains: A case study from the Eastern Himalaya. In Floristic Diversity in Himalaya Hotspot Region; Bishen Singh Mahendra Pal Singh: Dehra Dun, India, 2018. [Google Scholar]
- Zhong, L.; Ma, Y.; Fu, Y.; Pan, X.; Hu, W.; Su, Z.; Salama, M.S.; Feng, L. Assessment of soil water deficit for the middle reaches of Yarlung-Zangbo River from optical and passive microwave images. Remote Sens. Environ. 2014, 142, 1–8. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, L.; Yao, T. Variations of δ~(18)O in Precipitation of the Yarlung Zangbo River Basin. Acta Geogr. Sin. Chin. Ed. 2007, 62, 517. [Google Scholar]
- Wang, X.; Zhong, X.; Liu, S.; Liu, J.; Wang, Z.; Li, M. Regional assessment of environmental vulnerability in the Tibetan Plateau: Development and application of a new method. J. Arid Environ. 2008, 72, 1929–1939. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, F.; Fu, S.; Shi, X.; Chen, Y.; Jagirani, M.D.; Zeng, C. Assessment of soil erosion risk and its response to climate change in the mid-Yarlung Tsangpo River region. Environ. Sci. Pollut. Res. 2020, 27, 607–621. [Google Scholar] [CrossRef]
- Wei, X.-H.; Yang, P.; Dong, G.-R. Agricultural development and farmland desertification in middle “One River and Its Two Branches” River basin of Tibet. J. Desert Res. 2004, 24, 196–200. [Google Scholar]
- Chinese Research Academy of Environmental Sciences. State Environment Protection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals. Available online: http://www.craes.cn/en/ (accessed on 30 December 2020).
- Kitchener, B.G.; Wainwright, J.; Parsons, A.J. A review of the principles of turbidity measurement. Prog. Phys. Geogr. 2017, 41, 620–642. [Google Scholar] [CrossRef] [Green Version]
- Spectroradiometer, H. User’s Guide Version 4.05; Analytical Spectral Devices: Boulder, CO, USA, 2005. [Google Scholar]
- Sivasankar, T.; Borah, S.B.; Das, R.; Raju, P. An Investigation on Sudden Change in Water Quality of Brahmaputra River Using Remote Sensing and GIS. Natl. Acad. Sci. Lett. 2020, 43, 619–623. [Google Scholar] [CrossRef]
- Salama, M.; Dekker, A.; Su, Z.; Mannaerts, C.; Verhoef, W. Deriving inherent optical properties and associated inversion-uncertainties in the Dutch Lakes. Hydrol. Earth Syst. Sci. 2009, 13, 1113. [Google Scholar] [CrossRef] [Green Version]
- Thiemann, S.; Kaufmann, H. Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS-1C satellite data in the Mecklenburg Lake District, Germany. Remote Sens. Environ. 2000, 73, 227–235. [Google Scholar] [CrossRef]
- Huang, W.; Huang, J.; Wang, X.; Wang, F.; Shi, J. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra. Sensors 2013, 13, 16023–16050. [Google Scholar] [CrossRef] [PubMed]
- USGS. EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 30 December 2020).
- European Space Agency. Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 30 December 2020).
- Gascon, F.; Ramoino, F. Sentinel-2 Data Exploitation with ESA’s Sentinel-2 Toolbox. In Proceedings of the 19th European Geosciences Union (EGU) General Assembly 2017, Vienna, Austria, 23–28 April 2017. [Google Scholar]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2Cor: L2A processor for users. In Proceedings of the Proceedings Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016; pp. 1–8. [Google Scholar]
- Vibhute, A.D.; Kale, K.; Dhumal, R.K.; Mehrotra, S. Hyperspectral imaging data atmospheric correction challenges and solutions using QUAC and FLAASH algorithms. In Proceedings of the 2015 International Conference on Man and Machine Interfacing (MAMI), Bhubaneswar, India, 17–19 December 2015; pp. 1–6. [Google Scholar]
- Singh, K.V.; Setia, R.; Sahoo, S.; Prasad, A.; Pateriya, B. Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto Int. 2015, 30, 650–661. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Google Earth Engine. Landsat 8 Collection 1 Tier 1 Annual NDVI Composite. 1 January 2013–1 January 2021. Available online: https://explorer.earthengine.google.com/#detail/LANDSAT%2FLC08%2FC01%2FT1_ANNUAL_NDVI (accessed on 6 January 2021).
- Google Earth Engine. Landsat 5 TM Collection 1 Tier 1 Annual NDVI Composite. 1 January 1984–1 January 2013. Available online: https://explorer.earthengine.google.com/#detail/LANDSAT%2FLT05%2FC01%2FT1_ANNUAL_NDVI (accessed on 6 January 2021).
- Abyaneh, H.Z. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. J. Environ. Health Sci. Eng. 2014, 12, 40. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.; Hommel, G.; Blettner, M. Linear regression analysis: Part 14 of a series on evaluation of scientific publications. Dtsch. Ärzteblatt Int. 2010, 107, 776. [Google Scholar]
- IBM. SPSS 23.0. Available online: https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-23 (accessed on 30 December 2020).
- R 3.5.2. Available online: https://cran.r-project.org/bin/windows/base/old/3.5.2/ (accessed on 30 December 2020).
- Dai, X.; Zhou, Y.; Ma, W.; Zhou, L. Influence of spatial variation in land-use patterns and topography on water quality of the rivers inflowing to Fuxian Lake, a large deep lake in the plateau of southwestern China. Ecol. Eng. 2017, 99, 417–428. [Google Scholar] [CrossRef]
- Bonansea, M.; Rodriguez, M.C.; Pinotti, L.; Ferrero, S. Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sens. Environ. 2015, 158, 28–41. [Google Scholar] [CrossRef]
- Du, J.; Shi, C.-x. Modeling and analysis of effects of precipitation and vegetation coverage on runoff and sediment yield in Jinsha River Basin. Water Sci. Eng. 2013, 6, 44–58. [Google Scholar]
- Langbein, W.B.; Schumm, S.A. Yield of sediment in relation to mean annual precipitation. EosTrans. Am. Geophys. Union 1958, 39, 1076–1084. [Google Scholar] [CrossRef] [Green Version]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Palmer, S.C.; Kutser, T.; Hunter, P.D. Remote Sensing of Inland Waters: Challenges, Progress and Future Directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, C.; de Matos Valerio, A.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Richey, J.; Stadler, P.; Crawford, J.; Striegl, R. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Sha, Y.; Li, W.; Fan, J.; Cheng, G. Determining critical support discharge of a riverhead and river network analysis: Case studies of Lhasa River and Nyangqu River. Chin. Geogr. Sci. 2016, 26, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Jiang, L.; Ge, D.; Shang, M. Driving mechanism of vegetation coverage change in the Yarlung Zangbo River Basin under the stress of global warming. J. Trop. Subtrop. Bot. 2017, 25, 209–217. [Google Scholar]
- Bing, C.Y.H.L.X.; Jun, S.P. Variation in ndvi driven by climate factors across china, 1983–1992. Acta Phytoecol. Sin. 2001, 25, 716–720. [Google Scholar]
- Gao, G.; Zhang, J.; Liu, Y.; Ning, Z.; Fu, B.; Sivapalan, M. Spatio-temporal patterns of the effects of precipitation variability and land use/cover changes on long-term changes in sediment yield in the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2017, 21, 4363–4378. [Google Scholar] [CrossRef] [Green Version]
Sensor | Bands | Spatial Resolution |
---|---|---|
Landsat 5, Thematic Mapper (TM) | Band 1 Blue (450–520 nm), Band 2 Green (520–600 nm), Band 3 Red (630–690 nm), Band 4 NIR (760–900 nm) | 30 m |
Landsat 8, Operational Land Imager (OLI) | Band 2 Blue (450–515 nm), Band 3 Green (525–600 nm), Band 4 Red (630–680 nm), Band 5 NIR (845–885 nm) | 30 m |
Sentinel-2, Multispectral Instrument (MSI) | Band 2 Blue (459–525 nm), Band 3 Green (542–578 nm), Band 4 Red (649–680 nm), Band 8 NIR (779–885 nm) | 10 m |
Band 5 Red Edge (697–712 nm), Band 6 Red Edge (733–748 nm), Band 7 Red Edge (773–793 nm), Band 8a NIR (854–875 nm) | 20 m |
Sensors | Landsat 5 TM | Landsat 8 OLI | Sentinel-2 MSI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2007 | 2008 | 2009 | 2010 | 2011 | 2013 | 2014 | 2015 | 2016 | 2017 | 2016 | 2017 |
January | 8 | 2 | 8 | 7 | 8 | / | 4 | 2 | 4 | 1 | 4 | 2 |
February | 2 | 5 | 8 | 7 | 8 | / | 4 | 3 | 2 | 2 | 5 | 3 |
March | 7 | 7 | 7 | 1 | 3 | / | 0 | 3 | 3 | 4 | 0 | 2 |
April | 7 | 3 | 8 | 6 | 4 | 1 | 2 | 1 | 3 | 2 | 0 | 2 |
May | 4 | 2 | 4 | 2 | 3 | 1 | 1 | 0 | 0 | 2 | 2 | 4 |
June | 1 | 1 | 4 | 1 | 3 | 0 | 2 | 0 | 0 | 1 | 0 | 2 |
July | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 |
August | 1 | 0 | 0 | 1 | 2 | 2 | 0 | 0 | 2 | 1 | 0 | 1 |
September | 1 | 1 | 1 | 2 | 5 | 3 | 0 | 1 | 0 | 2 | 0 | 2 |
October | 1 | 4 | 4 | 2 | 3 | 1 | 2 | 4 | 1 | 2 | 3 | 3 |
November | 0 | 9 | 9 | 9 | 4 | 3 | 5 | 4 | 6 | 6 | 4 | 6 |
December | 0 | 10 | 5 | 9 | 0 | 6 | 5 | 4 | 5 | 5 | 4 | 8 |
Total | 33 | 46 | 58 | 47 | 43 | 17 | 25 | 22 | 26 | 29 | 22 | 38 |
Model Formats | Equation | Description |
---|---|---|
Linear | Y = b + a × X | Linear model grows at a constant rate. |
Logarithmic | Y = b + a × ln(X) | Logarithmic model grows very rapidly followed by slower growth to infinity. |
Inverse | Y = b + a/X | Inverse function is also known as reciprocal function. Its vertical asymptote is x = 0 and horizonal asymptote is y = b. |
Quadratic | Y = b + a1 × X + a2 × X2 | The graph of a univariate quadratic function is a parabola which opens upwards when a1 is positive and is symmetric at x = −a2/(2 × a1). |
Cubic | Y = b + a1 × X + a2 × X2 + a3 × X3 | Cubic model delineates polynomial growth at the 3rd order. |
Exponential | ln(Y) = ln(b) + a × X | Exponential growth passes through (0, b) and keeps increasing to infinity. |
Power | ln(Y) = ln(b) + a × ln(X) | Power curve passes through (0,0) and (1, b). As the power increases, the graphs flatten somewhat near the origin and become steeper away from the origin. |
S-curve | ln(Y) = b + a/X | S-curve model is a sigmoid function with an “S”-shape like the logistic model. It first grows slowly, then moderately and finally slowly approaches an asymptote. |
Landsat 5 TM | Landsat 8 OLI | Sentinel-2 MSI | |
---|---|---|---|
Blue | −0.145 | −0.151 | −0.132 |
Green | −0.023 | −0.040 | −0.042 |
Red | 0.110 | 0.102 | 0.120 |
NIR | 0.208 | 0.187 | 0.212 |
NIR/Blue | 0.669 ** | 0.591 ** | 0.667 ** |
NIR/Green | 0.548 ** | 0.459 ** | 0.575 ** |
NIR/Red | 0.413 * | 0.292 | 0.417 * |
Red/Blue | 0.696 ** | 0.697 ** | 0.704 * |
Red/Green | 0.761 ** | 0.759 ** | 0.759 ** |
Green/Blue | 0.733 ** | 0.719 ** | 0.710 ** |
(NIR − Blue)/(NIR + Blue) | 0.650 ** | 0.623 ** | 0.687 ** |
(NIR − Green)/(NIR + Green) | 0.550 ** | 0.485 ** | 0.571 ** |
(NIR − Red)/(NIR + Red) | 0.445 * | 0.339 * | 0.335 * |
(Red − Blue)/(Red + Blue) | 0.690 ** | 0.692 ** | 0.699 ** |
(Red − Green)/(Red + Green) | 0.727 ** | 0.716 ** | 0.708 |
(Green − Blue)/(Green + Blue) | 0.708 ** | 0.704 ** | 0.712 ** |
Red Edge1 (Band 5) | Red Edge2 (Band 6) | Red Edge3 (Band 7) | Near-Infrared (Band 8a) | |
---|---|---|---|---|
Single band | 0.138 | 0.234 | 0.245 | 0.187 |
Band ratio with Blue band (Band 2) | 0.667 ** | 0.665 ** | 0.654 ** | 0.460 * |
Band ratio with Green band (Band 3) | 0.737 ** | 0.740 ** | 0.729 ** | 0.569 ** |
Band ratio with Red band (Band 4) | 0.335 * | 0.540 ** | 0.539 ** | 0.263 |
Sensors | Model Formats | Equations 1 | R2 | RMS | MRE |
---|---|---|---|---|---|
Sentinel-2 MSI | Linear | Y = −303.725 + 409.219 × X | 0.622 | 34.756 | 0.992 |
Logarithmic | Y = 105.062 + 352.143 × ln(X) | 0.596 | 35.920 | 1.134 | |
Inverse | Y = 399.117 − 295.022/X | 0.563 | 37.349 | 1.309 | |
Quadratic | Y= 337.271 − 1051.336 × X + 818.009 × X2 | 0.661 | 32.920 | 0.679 | |
Cubic | Y = 35.391 − 385.724*X2 + 435.681*X3 | 0.661 | 32.910 | 0.731 | |
Exponential | ln(Y) = −5.298 + 9.814 × X | 0.764 | 40.406 | 0.497 | |
Power | ln(Y) = 4.528 + 8.638 × ln(X) | 0.766 | 36.091 | 0.488 | |
S-curve | ln(Y) = 11.918 − 7.4/X | 0.757 | 34.550 | 0.498 | |
Landsat 8 OLI | Linear | Y = −346.292 + (445.641 × X) | 0.609 | 35.318 | 1.031 |
Logarithmic | Y = 99.470 + (391.316 × ln(X)) | 0.582 | 36.520 | 1.171 | |
Inverse | Y = 434.836 + (−335.683/X) | 0.549 | 37.933 | 1.338 | |
Quadratic | Y = 535.137 + (−1517.783 × X) + (1078.271 × X2) | 0.661 | 32.890 | 0.630 | |
Cubic | Y = 253.884 + (−558.206 × X) + (0 × X2) + (399.496 × X3) | 0.661 | 32.881 | 0.667 | |
Exponential | ln(Y) = ln(0.002) + (10.798 × X) | 0.765 | 39.705 | 0.489 | |
Power | ln(Y) = ln(81.066) + (9.687 × ln(X)) | 0.763 | 35.873 | 0.485 | |
S-curve | ln(Y) = 12.886 + (−8.488/X) | 0.751 | 34.626 | 0.504 | |
Landsat 5 TM | Linear | Y = −379.185 + (483.082 × X) | 0.610 | 35.281 | 1.024 |
Logarithmic | Y = 103.605 + (426.526 × ln(X)) | 0.587 | 36.296 | 1.145 | |
Inverse | Y = 472.612 + (−369.664/X) | 0.560 | 37.487 | 1.289 | |
Quadratic | Y = 637.447 + (−1778.314 × X) + (1242.904 × X2) | 0.657 | 33.094 | 0.651 | |
Cubic | Y = 114.834 + (0 × X) + (−754.652 × X2) + (741.251 × X3) | 0.657 | 33.074 | 0.700 | |
Exponential | ln(Y) = ln(0.001) + (11.676 × X) | 0.762 | 39.311 | 0.494 | |
Power | ln(Y) = ln(89.525 + (10.507 × ln(X)) | 0.762 | 36.065 | 0.487 | |
S-curve | ln(Y) = 13.77 + (−9.28/X) | 0.754 | 34.750 | 0.494 |
Model Formats | MRE (Overall) | MRE (Turbidity >30 NTU) |
---|---|---|
Linear | 0.992 | 0.221 |
Logarithmic | 1.134 | 0.222 |
Inverse | 1.309 | 0.221 |
Quadratic | 0.679 | 0.219 |
Cubic | 0.731 | 0.217 |
Exponential | 0.497 | 0.28 |
Power | 0.488 | 0.251 |
S-Curve | 0.498 | 0.233 |
Sensors | Sentinel-2 MSI | Landsat 8 OLI | Landsat 5 TM |
---|---|---|---|
MRE (All validation samples) | 2.745 | 2.714 | 2.741 |
MRE (Validation samples of turbidity > 30 NTU) | 0.189 | 0.192 | 0.193 |
RMS | 10.776 | 11.074 | 11.055 |
Turbidity~ Precipitation | Turbidity~ Precipitation One Month Earlier | |
---|---|---|
S1 | 0.865 ** | 0.843 ** |
S2 | 0.790 ** | 0.851 ** |
S3 | 0.471 ** | 0.753 ** |
S4 | 0.670 ** | 0.541 ** |
S5 | 0.608 ** | 0.668 ** |
S6 | 0.752 ** | 0.835 ** |
S7 | 0.494 ** | 0.368 ** |
S8 | 0.280 | 0.293 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, M.; Wang, S.; Li, Y.; Tang, M.; Ma, Y. Pattern of Turbidity Change in the Middle Reaches of the Yarlung Zangbo River, Southern Tibetan Plateau, from 2007 to 2017. Remote Sens. 2021, 13, 182. https://doi.org/10.3390/rs13020182
Shen M, Wang S, Li Y, Tang M, Ma Y. Pattern of Turbidity Change in the Middle Reaches of the Yarlung Zangbo River, Southern Tibetan Plateau, from 2007 to 2017. Remote Sensing. 2021; 13(2):182. https://doi.org/10.3390/rs13020182
Chicago/Turabian StyleShen, Ming, Siyuan Wang, Yingkui Li, Maofeng Tang, and Yuanxu Ma. 2021. "Pattern of Turbidity Change in the Middle Reaches of the Yarlung Zangbo River, Southern Tibetan Plateau, from 2007 to 2017" Remote Sensing 13, no. 2: 182. https://doi.org/10.3390/rs13020182
APA StyleShen, M., Wang, S., Li, Y., Tang, M., & Ma, Y. (2021). Pattern of Turbidity Change in the Middle Reaches of the Yarlung Zangbo River, Southern Tibetan Plateau, from 2007 to 2017. Remote Sensing, 13(2), 182. https://doi.org/10.3390/rs13020182