Impact of Rapid Urban Sprawl on the Local Meteorological Observational Environment Based on Remote Sensing Images and GIS Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Selection of Meteorological Stations
2.3. Classification of Meteorological Stations
2.4. Anthropogenic Heat Environment around Meteorological Stations
2.5. Correlation between Built-up Areas and the Anthropogenic Heat Environment
3. Results
3.1. Urbanization Processes around Meteorological Stations
3.2. Relationship between Urban Sprawl and the Anthropogenic Heat Environment
3.3. Impact of the Relocation of Meteorological Stations on the Observational Environment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Peterson, T.C. Examination of Potential Biases in Air Temperature Caused by Poor Station Locations. Bull. Am. Meteorol. Soc. 2006, 87, 1073–1080. [Google Scholar] [CrossRef]
- Ren, G.; Li, J.; Ren, Y.; Chu, Z.; Zhang, A.; Zhou, Y.; Zhang, L.; Zhang, Y.; Bian, T. An Integrated Procedure to Determine a Reference Station Network for Evaluating and Adjusting Urban Bias in Surface Air Temperature Data. J. Appl. Meteor. Climatol. 2015, 54, 1248–1266. [Google Scholar] [CrossRef]
- Li, Y.-B.; Shi, T.; Yang, Y.-J.; Wu, B.-W.; Wang, L.-B.; Shi, C.-E.; Guo, J.-X.; Ji, C.-L.; Wen, H.-Y. Satellite-Based Investigation and Evaluation of the Observational Environment of Meteorological Stations in Anhui Province, China. Pure Appl. Geophys. PAGEOPH 2014, 172, 1735–1749. [Google Scholar] [CrossRef]
- Ren, G.; Ding, Y.; Tang, G. An overview of mainland China temperature change research. J. Meteorol. Res. 2017, 31, 3–16. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Shi, T.; Huang, Y.; Wang, H.; Shi, C.E.; Yang, Y.J. Influence of Urbanization on the Thermal Environment of Meteorological Stations: Satellite-observational Evidence. Adv. Clim. Chang. Res. 2015, 1, 7–15. [Google Scholar] [CrossRef]
- Yang, Y.-J.; Wu, B.-W.; Shi, C.-E.; Zhang, J.-H.; Li, Y.-B.; Tang, W.-A.; Wen, H.-Y.; Zhang, H.-Q.; Shi, T. Impacts of Urbanization and Station-relocation on Surface Air Temperature Series in Anhui Province, China. Pure Appl. Geophys. PAGEOPH 2012, 170, 1969–1983. [Google Scholar] [CrossRef]
- Mahmood, R.; Foster, S.A.; Logan, D. The GeoProfile metadata, exposure of instruments, and measurement bias in climatic record revisited. Int. J. Clim. 2006, 26, 1091–1124. [Google Scholar] [CrossRef]
- Davey, C.A.; Pielke Sr, R.A. Microclimate exposures of surface-based weather stations: Implication for the assessment of long-term temperature trends. Bull. Am. Meteorol. Soc. 2005, 86, 497–503. [Google Scholar]
- Li, Q.; Liu, X.; Zhang, H. Detecting and Adjusting on Temporal Inhomogeneities in Chinese Mean Surface Air Temper-ature Datasets. Adv. Atmos. Sci. 2004, 21, 260–268. [Google Scholar] [CrossRef]
- Karl, T.R.; Williams, J.C.N.; Young, P.J.; Wendland, W.M. A Model to Estimate the Time of Observation Bias Associated with Monthly Mean Maximum, Minimum and Mean Temperatures for the United States. J. Clim. Appl. Meteorol. 1986, 25, 145–160. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Ren, G. A Remote-Sensing Method of Selecting Reference Stations for Evaluating Urbanization Effect on Surface Air Temperature Trends. J. Clim. 2011, 24, 3179–3189. [Google Scholar] [CrossRef] [Green Version]
- Van Den Hoek, J.; Smith, A.C.; Hurni, K.; Saksena, S.; Fox, J. Shedding New Light on Mountainous Forest Growth: A Cross-Scale Evaluation of the Effects of Topographic Illumination Correction on 25 Years of Forest Cover Change across Nepal. Remote Sens. 2021, 13, 2131. [Google Scholar] [CrossRef]
- Ghayour, L.; Neshat, A.; Paryani, S.; Shahabi, H.; Shirzadi, A.; Chen, W.; Al-Ansari, N.; Geertsema, M.; Pourmehdi Amiri, M.; Gholamnia, M.; et al. Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms. Remote Sens. 2021, 13, 1349. [Google Scholar] [CrossRef]
- Malinowski, R.; Lewiński, S.; Rybicki, M.; Gromny, E.; Jenerowicz, M.; Krupiński, M.; Nowakowski, A.; Wojtkowski, C.; Krupiński, M.; Krätzschmar, E.; et al. Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12, 3523. [Google Scholar] [CrossRef]
- Li, Q.; Yang, S.; Xu, W.; Wang, X.L.; Jones, P.; Parker, D.; Zhou, L.; Feng, Y.; Gao, Y. China experiencing the recent warming hiatus. Geophys. Res. Lett. 2015, 42, 889–898. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Li, Q.; Chen, B.; Gao, Z.; Ning, G.; Liu, C.; Li, Y.; Luo, M. Modulations of surface thermal environment and agricultural activity on intraseasonal variations of summer diurnal temperature range in the Yangtze River Delta of China. Sci. Total Environ. 2020, 736, 139445. [Google Scholar] [CrossRef]
- O’Neill, R.V.; Hunsaker, C.T.; Jones, K.B.; Riitters, K.H.; Wickham, J.D.; Schwartz, P.M.; Goodman, I.A.; Jackson, B.L.; Baillargeon, W.S. Monitoring Environmental Quality at the Landscape Scale. Bioscience 1997, 47, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Dong, L.; Liu, X.; Shi, G.Y.; Chen, L.; Nakajima, T.; Habib, A. Exploring the possible effect of anthropogenic heat release due to global energy consumption upon global climate: A climate model study. Int. J. Clim. 2016, 36, 4790–4796. [Google Scholar] [CrossRef]
- Chen, B.; Dong, L.; Shi, G.; Li, L.-J.; Chen, L.-F. Anthropogenic Heat Release: Estimation of Global Distribution and Possible Climate Effect. J. Meteorol. Soc. Jpn. 2014, 92A, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Shi, G.Y. Estimation of the distribution of global anthropogenic heat flux. Atmos. Ocean. Sci. Lett. 2012, 5, 108–112. [Google Scholar]
- Chen, B.; Shi, G.; Wang, B.; Zhao, J.; Tan, S. Estimation of the anthropogenic heat release distribution in China from 1992 to 2009. Acta Meteorol. Sin. 2012, 26, 507–515. [Google Scholar] [CrossRef]
- Chen, B.; Zhao, J.-Q.; Shi, G.-Y. Reply to the Comments of F. Fujibe on Anthropogenic Heat Release: Estimation of Global Distribution and Possible Climate Effect. J. Meteorol. Soc. Jpn. 2015, 93, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Lau, N. Increasing Heat Stress in Urban Areas of Eastern China: Acceleration by Urbanization. Geophys. Res. Lett. 2018, 45, 13060–13069. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N. Urban Expansion and Drying Climate in an Urban Agglomeration of East China. Geophys. Res. Lett. 2019, 46, 6868–6877. [Google Scholar] [CrossRef]
- Chen, G.W.; Wang, D.Y.; Wang, Q.; Li, Y.G.; Wang, X.M.; Hang, J.; Gao, P.; Ou, C.Y.; Wang, K. The influence of aspect ratios and thermal storage on urban thermal environment in street canyon models by scaled outdoor measurement. Sci. Total Environ. 2020, 726, 138–147. [Google Scholar] [CrossRef]
- Yang, X.; Leung, L.R.; Zhao, N.; Zhao, C.; Qian, Y.; Hu, K.; Liu, X.; Chen, B. Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China. Geophys. Res. Lett. 2017, 44, 6940–6950. [Google Scholar] [CrossRef]
- Yang, X.; Ye, T.; Zhao, N.; Chen, Q.; Yue, W.; Qi, J.; Zeng, B.; Jia, P. Population Mapping with Multi sensor Remote Sensing Images and Point-Of-Interest Data. Remote Sens. 2019, 11, 574. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Gao, Z.; Shi, T.; Wang, H.; Li, Y.; Zhang, N.; Zhang, H.; Huang, Y. Assessment of Urban Surface Thermal Environment using MODIS with Population-weighted Method: A Case Study. J. Spat. Sci. 2019, 64, 287–300. [Google Scholar] [CrossRef]
- Wang, C.G.; Wei, X.L.; Yan, J.D.; Jin, L.J. Grade evaluation of detection environment of meteorological stations in Beijing. J. Appl. Meteor. Sci. 2019, 30, 117–128. [Google Scholar]
- Chen, S.H.; Li, L.; Jiang, H.F.; Ju, W.J.; Zhang, M.Y.; Liu, D.Y.; Yang, Y.J. Impact of Observational Environment Change on Air Temperature Based on High-Spatial-Resolution Satellite Remote Sensing Data. Acta Opt. Sin. 2020, 40, 1028001. [Google Scholar] [CrossRef]
- Balsa-Barreiro, J.; Li, Y.; Morales, A.; Pentland, A. Globalization and the shifting centers of gravity of world’s human dynamics: Implications for sustainability. J. Clean. Prod. 2019, 239, 1–17. [Google Scholar] [CrossRef]
- Kuang, W.; Zhang, S.; Li, X.; Lu, D. A 30-meter resolution dataset of impervious surface area and green space fractions of China’s cities, 2000–2018 (Version v4.0). Earth Syst. Sci. Data Discuss. 2020, 107, 1–23. [Google Scholar]
- Shou, Y.X.; Zhang, D.L. Recent advances in understanding urban heat island effects with some future prospects. Acta Meteorol. Sin. 2012, 70, 338–353. [Google Scholar]
- Zhou, X.Q.; Li, Y.J.; Li, X.Y.; Wang, Y.F. Analysis of the Three Modes Based on the Historical Observation Data from Relocation Meteorological Station. Chin. Agric. Sci. Bull. 2015, 31, 223–228. [Google Scholar]
- Liu, N.W.; Wan, Z.H.; Ma, Y.J. Numerical study on meteorological field of boundary layer in the city group of middle Liaoning. Sci. Meteorol. Sin. 2008, 28, 558–562. [Google Scholar]
- Ren, X.; Wang, Y.W.; Zhang, Z.; Yang, Y.C.; Hu, C.; Kang, H.Q. Simulation studies for Lake Taihu effect on surrounding cities thermal environment. Acta Meteorol. Sin. 2017, 75, 645–660. [Google Scholar]
- Wang, J.; Xue, C.; Huang, S.; Wang, D.; Pan, L.; Cheng, L. Sensitivity Test of Impact of Urbanization and Anthropogenic Heat on Meteorological Elements in Xi’an. J. Arid Meteorol. 2015, 33, 434–443. [Google Scholar]
- Liu, P.; Li, L.P.; Liao, J.B.; Guo, X.M.; Zhang, Y.R. A study of the effect of anthropogenic heat on meteorological factors in the summer of Shanghai City. J. Lanzhou Univ. Nat. Sci. 2019, 55, 267–273. [Google Scholar]
- Niu, Q.; Nie, C.; Lin, F.; Li, L.; Ji, L. Model study of relationship between local temperature and artificial heat release. Sci. China Ser. E Technol. Sci. 2012, 55, 821–830. [Google Scholar] [CrossRef]
- Qiao, Z.; Tian, G.J. Dynamic monitoring of the footprint and capacity for urban heat island in Beijing between 2001 and 2012 based on MODIS. J. Remote Sens. 2015, 19, 476–484. [Google Scholar]
- Liu, Y.H.; Luan, Q.Z.; Quan, W.J.; Zhang, S. Research on Heat Environment of Beijing-Tianjin-Tangshan Urban Group Based on Multisource Satellite Data. Ecol. Environ. Sci. 2015, 24, 1150–1158. [Google Scholar]
- Yan, Z.; Li, Z.; Li, Q.; Jones, P. Effects of site change and urbanisation in the Beijing temperature series 1977–2006. Int. J. Clim. 2009, 30, 1226–1234. [Google Scholar] [CrossRef]
- Li, Z.; Yan, Z. Application of multiple analysis of series for homogenization (MASH) to Beijing daily temperature series 1960–2006. Adv. Atmos. Sci. 2010, 27, 777–787. [Google Scholar] [CrossRef]
- Cao, L.J.; Yan, Z.W. Progress in research on homogenization of climate data. Adv. Clim. Chang. Res. 2012, 3, 59–67. [Google Scholar]
- Yang, S.; Li, Q.X. Improvement in homogeneity analysis method and update of China precipitation data. Prog. Inquisitiones Mutat. Clim. 2014, 10, 276–281. [Google Scholar]
- Zhang, G.H.; Guan, Y.H.; Guo, Y.L. Discussion on current situation of meteorological observational environment and its protection measurements. J. Meteorol. Environ. 2012, 28, 65–70. [Google Scholar]
- Yan, L.; Office, A.M. Analysis of the Main Meteorological Factors Differences in Meteorological Stations Migrating and In-fluence on Weather Forecasting Service. Meteorol. Environ. Sci. 2017, 40, 138–143. [Google Scholar]
- Li, Y.J.; Liang, G.J.; Yang, S.; Lu, B.; Zhang, R.X.; Song, X.J. Comparative Analysis of Synchronously Observed Temperature Measurements before and after Station Move. Meteorol. Sci. Technol. 2010, 38, 599–604. [Google Scholar]
- Zong, L.; Liu, S.; Yang, Y.; Ren, G.; Yu, M.; Zhang, Y.; Li, Y. Synergistic Influence of Local Climate Zones and Wind Speeds on the Urban Heat Island and Heat Waves in the Megacity of Beijing, China. Front. Earth Sci. 2021, 9, 3786. [Google Scholar] [CrossRef]
- Shi, T.; Huang, Y.; Sun, D.; Lu, G.; Yang, Y. A New Method for Correcting Urbanization-Induced Bias in Surface Air Temperature Observations: Insights from Comparative Site-Relocation Data. Front. Environ. Sci. 2021, 9, 5418. [Google Scholar] [CrossRef]
- Txomin, H.; Luis, A.R.; Jorge, A.R. Land-Use Mapping of Valencia City Area from Aerial Images and LiDAR Data. In Proceedings of the GEOProcessing 2012: The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services, Valencia, Spain, 30 January–4 February 2012; pp. 232–237. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ning, G.; Chen, S.; Yang, Y. Impact of Rapid Urban Sprawl on the Local Meteorological Observational Environment Based on Remote Sensing Images and GIS Technology. Remote Sens. 2021, 13, 2624. https://doi.org/10.3390/rs13132624
Zhang Y, Ning G, Chen S, Yang Y. Impact of Rapid Urban Sprawl on the Local Meteorological Observational Environment Based on Remote Sensing Images and GIS Technology. Remote Sensing. 2021; 13(13):2624. https://doi.org/10.3390/rs13132624
Chicago/Turabian StyleZhang, Yanhao, Guicai Ning, Shihan Chen, and Yuanjian Yang. 2021. "Impact of Rapid Urban Sprawl on the Local Meteorological Observational Environment Based on Remote Sensing Images and GIS Technology" Remote Sensing 13, no. 13: 2624. https://doi.org/10.3390/rs13132624
APA StyleZhang, Y., Ning, G., Chen, S., & Yang, Y. (2021). Impact of Rapid Urban Sprawl on the Local Meteorological Observational Environment Based on Remote Sensing Images and GIS Technology. Remote Sensing, 13(13), 2624. https://doi.org/10.3390/rs13132624