Evaluation of CFOSAT Scatterometer Wind Data in Global Oceans
Abstract
:1. Introduction
2. Materials and Methods
2.1. CFOSAT SCAT Wind Data
2.2. Buoy Datasets
2.3. Methods
3. Results
3.1. Overall Statistics
3.2. Analysis of Residuals
3.3. Errors Versus Buoy Location
4. Discussion
4.1. Comparison with Other Satellite Wind Retrievals
4.2. The Impact of Land and Rain Contamination on Wind Retrievals
4.3. Effects of Atmospheric and Oceanic Environment
4.3.1. SWH
4.3.2. Air-Sea Temperature Difference
4.3.3. SST
4.3.4. Atmospheric Pressure
4.3.5. Ocean Currents
4.4. Wind Performance during the Passage of Tropical Cyclone
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, I.R.; Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Mears, C.A.; Smith, D.K.; Wentz, F.J. Comparison of Special Sensor Microwave Imager and buoy-measured wind speeds from 1987 to 1997. J. Geophys. Res. 2001, 106, 11719–11729. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Shi, H.; Wang, Z.; Yu, H.; Yin, X.; Liao, Q. Comparison of Wind Speeds from Spaceborne Microwave Radiometers with In Situ Observations and ECMWF Data over the Global Ocean. Remote Sens. 2018, 10, 425. [Google Scholar] [CrossRef] [Green Version]
- Ebuchi, N.; Graber, H.C.; Caruso, M.J. Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Ocean. Technol. 2002, 19, 2049–2062. [Google Scholar] [CrossRef]
- Pickett, M.H.; Tang, W.; Rosenfeld, L.K.; Wash, C.H. QuikSCAT satellite comparisons with nearshore buoy wind data off the US west coast. J. Atmos. Ocean. Technol. 2003, 20, 1869–1879. [Google Scholar] [CrossRef] [Green Version]
- Satheesan, K.; Sarkar, A.; Parekh, A.; Kumar, M.R.R.; Kuroda, Y. Comparison of wind data from QuikSCAT and buoys in the Indian Ocean. Int. J. Remote Sens. 2007, 28, 2375–2382. [Google Scholar] [CrossRef]
- Bentamy, A.; Croize-Fillon, D.; Perigaud, C. Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations. Ocean Sci. 2008, 4, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Liu, G.; Li, Z.; Yu, Y. Preliminary validation of ocean surface vector winds estimated from China’s HY-2A scatterometer. Int. J. Remote Sens. 2014, 35, 4532–4543. [Google Scholar] [CrossRef]
- Xing, J.; Shi, J.; Lei, Y.; Huang, X.-Y.; Liu, Z. Evaluation of HY-2A Scatterometer Wind Vectors Using Data from Buoys, ERA-Interim and ASCAT during 2012–2014. Remote Sens. 2016, 8, 390. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhu, J.; Lin, M.; Zhang, Y.; Chang, Y. Evaluating Chinese HY-2B HSCAT Ocean Wind Products Using Buoys and Other Scatterometers. IEEE Geosci. Remote. Sens. Lett. 2020, 17, 923–927. [Google Scholar] [CrossRef]
- Wang, Z.; Stoffelen, A.; Zou, J.; Lin, W.; Verhoef, A.; Zhang, Y.; He, Y.; Lin, M. Validation of New Sea Surface Wind Products From Scatterometers Onboard the HY-2B and MetOp-C Satellites. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4387–4394. [Google Scholar] [CrossRef]
- Freilich, M.H.; Vanhoff, B.A. The accuracy of preliminary WindSat vector wind measurements: Comparisons with NDBC buoys and QuikSCAT. IEEE Trans. Geosci. Remote Sens. 2006, 44, 622–637. [Google Scholar] [CrossRef]
- Wentz, F.J.; Meissner, T.; Smith, D.K. Assessment of the initial release of WindSat wind retrievals. RSS Tech. Rep. 2005, 10605, 2005. [Google Scholar]
- Zhang, L.; Shi, H.; Yu, H.; Yi, X. WindSat satellite comparisons with nearshore buoy wind data near the U.S. west and east coasts. Acta Oceanol. Sin. 2016, 35, 50–58. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, H.; Du, H.; Zhu, E.; Zhang, Z.; Fang, X. Comparison of WindSat and buoy-measured ocean products from 2004 to 2013. Acta Oceanol. Sin. 2016, 35, 67–78. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Jia, Y.; Fan, C.; Cui, W. Validation of Sentinel-3A/3B and Jason-3 Altimeter Wind Speeds and Significant Wave Heights Using Buoy and ASCAT Data. Remote Sens. 2020, 12, 2079. [Google Scholar] [CrossRef]
- Lin, W.; Portabella, M.; Lang, S.; Dong, X.; Xu, X.; Wang, Z.; He, Y. On the Quality of Cfosat Scatterometer Winds. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8343–8346. [Google Scholar]
- Zhu, D.; Zhang, L.; Dong, X.; Yun, R.; Lin, W. Preliminary Calibrations of the Cfosat Scatterometer. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8347–8349. [Google Scholar]
- Zou, J.; Wang, Z.; Lin, M. Analysis of the High-Latitude Sea Surface Wind Acquisition Ability of Seven Satellite Scatterometers. IEEE Geosci. Remote. Sens. Lett. 2021, 1545–1549. [Google Scholar] [CrossRef]
- Lin, W.; Dong, X.; Portabella, M.; Lang, S.; He, Y.; Yun, R.; Wang, Z.; Xu, X.; Zhu, D.; Liu, J. A perspective on the performance of the CFOSAT rotating fan-beam scatterometer. IEEE Trans. Geosci. Remote Sens. 2018, 57, 627–639. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, R.; Huang, J.; Zeng, L.; Huang, F. Biases of five latent heat flux products and their impacts on mixed-layer temperature estimates in the S outh C hina S ea. J. Geophys. Res. Oceans 2017, 122, 5088–5104. [Google Scholar] [CrossRef]
- Kara, A.B.; Wallcraft, A.J.; Bourassa, M.A. Air-sea stability effects on the 10 m winds over the global ocean: Evaluations of air-sea flux algorithms. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.; Zhang, H.-M.; Frank, H.P.; Bidlot, J.-R.; Higaki, M.; Stevens, S.; Hankins, W.R. Evaluation of various surface wind products with OceanSITES buoy measurements. Wea. Forecast. 2013, 28, 1281–1303. [Google Scholar] [CrossRef]
- Peixoto, J.P.; Oort, A.H. Physics of Climate. 1992. Available online: https://www.sciencedirect.com/science/article/pii/0308521X96867722 (accessed on 1 December 2020).
- Hwang, P.A.; Teague, W.J.; Jacobs, G.A.; Wang, D.W. A statistical comparison of wind speed, wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. J. Geophys. Res. 1998, 103, 10451–10468. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Li, Y.; Li, X.; Zhang, Z.; Cao, Y.; Cheng, Y. Impact of Ships and Ocean Fronts on Coastal Sea Surface Wind Measurements From the Advanced Scatterometer. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2162–2169. [Google Scholar] [CrossRef]
- Kumar, R.; Chakraborty, A.; Parekh, A.; Sikhakolli, R.; Gohil, B.S.; Kiran Kumar, A.S. Evaluation of Oceansat-2-Derived Ocean Surface Winds Using Observations From Global Buoys and Other Scatterometers. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2571–2576. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Evaluation of ISS-RapidScat Wind Vectors Using Buoys and ASCAT Data. Remote Sens. 2018, 10, 648. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Chen, G. Validation and intercomparison of HY-2A/MetOp-A/Oceansat-2 scatterometer wind products. Chin. J. Oceanol. Limn. 2015, 33, 1181–1190. [Google Scholar] [CrossRef]
- Sudha, A.K.; Prasada Rao, C.V.K. Comparison of Oceansat-2 scatterometer winds with buoy observations over the Indian Ocean and the Pacific Ocean. Remote Sens. Lett. 2012, 4, 171–179. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Comparison of Oceansat-2 Scatterometer Wind Data with Global Moored Buoys and ASCAT Observation. Adv. Meteorol. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Zhao, C. Evaluation of HY-2A Scatterometer Ocean Surface Wind Data during 2012–2018. Remote Sens. 2019, 11, 2968. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Portabella, M.; Stoffelen, A.; Vogelzang, J.; Verhoef, A. ASCAT wind quality under high subcell wind variability conditions. J. Geophys. Res. 2015, 120, 5804–5819. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Li, X.; Zheng, Q.; Gu, X.; Pichel, W.G.; Li, Z. Comparison of Ocean-Surface Winds Retrieved From QuikSCAT Scatterometer and Radarsat-1 SAR in Offshore Waters of the U.S. West Coast. IEEE Geosci. Remote. Sens. Lett. 2011, 8, 163–167. [Google Scholar] [CrossRef]
- Weissman, D.E.; Bourassa, M.A.; Tongue, J. Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors. J. Atmos. Ocean. Technol. 2002, 19, 738–746. [Google Scholar] [CrossRef]
- Quilfen, Y.; Chapron, B.; Collard, F.; Vandemark, D. Relationship between ERS scatterometer measurement and integrated wind and wave parameters. J. Atmos. Ocean. Technol. 2004, 21, 368–373. [Google Scholar] [CrossRef]
- Stopa, J.E.; Mouche, A.A.; Chapron, B.; Collard, F. Sea State Impacts on Wind Speed Retrievals From C-Band Radars. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2147–2155. [Google Scholar] [CrossRef]
- Jiang, H.; Zheng, H.; Mu, L. Improving Altimeter Wind Speed Retrievals Using Ocean Wave Parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1917–1924. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Zhu, J.; Ren, L.; Liu, Y.; Li, W.; Chen, C. Estimation of Significant Wave Heights from ASCAT Scatterometer Data via Deep Learning Network. Remote Sens. 2021, 13, 195. [Google Scholar] [CrossRef]
- Wang, Z.; Stoffelen, A.; Zhao, C.; Vogelzang, J.; Verhoef, A.; Verspeek, J.; Lin, M.; Chen, G. An SST-dependent K u-band geophysical model function for R apid S cat. J. Geophys. Res. Oceans 2017, 122, 3461–3480. [Google Scholar] [CrossRef]
- Kelly, K.A.; Dickinson, S.; McPhaden, M.J.; Johnson, G.C. Ocean currents evident in satellite wind data. Geophys. Res. Lett. 2001, 28, 2469–2472. [Google Scholar] [CrossRef]
- Yu, L.; Jin, X. Buoy perspective of a high-resolution global ocean vector wind analysis constructed from passive radiometers and active scatterometers (1987-present). J. Geophys. Res. 2012, 117, C11013. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, S.; Kelly, K.A.; Caruso, M.J.; McPhaden, M.J. Comparisons between the TAO buoy and NASA scatterometer wind vectors. J. Atmos. Ocean. Technol. 2001, 18, 799–806. [Google Scholar] [CrossRef]
- Sharma, R.; Agarwal, N.; Chakraborty, A.; Mallick, S.; Kumar, R. Assessing the Ocean Surface Current Impact on Scatterometer (C- and Ku-Bands) and Altimeter (Ka-Band) Derived Winds in the Bay of Bengal. IEEE Geosci. Remote. Sens. Lett. 2020, 1–5. [Google Scholar] [CrossRef]
- Plagge, A.M.; Vandemark, D.; Chapron, B. Examining the impact of surface currents on satellite scatterometer and altimeter ocean winds. J. Atmos. Ocean. Technol. 2012, 29, 1776–1793. [Google Scholar] [CrossRef]
- Quilfen, Y.; Chapron, B.; Vandemark, D. The ERS scatterometer wind measurement accuracy: Evidence of seasonal and regional biases. J. Atmos. Ocean. Technol. 2001, 18, 1684–1697. [Google Scholar] [CrossRef]
- Stiles, B.W.; Danielson, R.E.; Poulsen, W.L.; Brennan, M.J.; Hristova-Veleva, S.; Tsae-Pyng, S.; Fore, A.G. Optimized Tropical Cyclone Winds from QuikSCAT: A Neural Network Approach. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7418–7434. [Google Scholar] [CrossRef]
- Jaiswal, N.; Kumar, P.; Kishtawal, C.M. SCATSAT-1 wind products for tropical cyclone monitoring, prediction and surface wind structure analysis. Curr. Sci. 2019, 117, 983–992. [Google Scholar] [CrossRef]
- Zabolotskikh, E.; Mitnik, L.; Chapron, B. GCOM-W1 AMSR2 and MetOp-A ASCAT wind speeds for the extratropical cyclones over the North Atlantic. Remote Sens. Environ. 2014, 147, 89–98. [Google Scholar] [CrossRef]
- Zhang, G.; Perrie, W.; Zhang, B.; Yang, J.; He, Y. Monitoring of tropical cyclone structures in ten years of RADARSAT-2 SAR images. Remote Sens. Environ. 2020, 236, 111449. [Google Scholar] [CrossRef]
- Chavas, D.R.; Lin, N.; Dong, W.; Lin, Y. Observed tropical cyclone size revisited. J. Clim. 2016, 29, 2923–2939. [Google Scholar] [CrossRef]
- Yueh, S.H.; Stiles, B.W.; Liu, W.T. QuikSCAT wind retrievals for tropical cyclones. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2616–2628. [Google Scholar] [CrossRef] [Green Version]
- Chou, K.-H.; Wu, C.-C.; Lin, S.-Z. Assessment of the ASCAT wind error characteristics by global dropwindsonde observations. J. Geophys. Res. 2013, 118, 9011–9021. [Google Scholar] [CrossRef]
- Chou, K.-H.; Wu, C.-C.; Lin, P.-H.; Majumdar, S. Validation of QuikSCAT wind vectors by dropwindsonde data from Dropwindsonde Observations for Typhoon Surveillance Near the Taiwan Region (DOTSTAR). J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
Bias | Root Mean Square Error (RMSE) | r | Collocations | |||||
---|---|---|---|---|---|---|---|---|
Speed (m s−1) | Direction (°) | Speed (m s−1) | Direction (°) | Speed | Direction | Speed | Direction | |
All | 0.06 | 1.61 | 1.39 | 34.32 | 0.89 | 0.95 | 298,871 | 263,722 |
Near shore | ||||||||
All | 0.33 | 2.57 | 1.63 | 36.97 | 0.89 | 0.94 | 57,837 | 53,691 |
Rain | 0.53 | 2.16 | 2.33 | 49.27 | 0.86 | 0.9 | 11,187 | 10,218 |
No Rain | 0.28 | 2.67 | 1.42 | 33.43 | 0.91 | 0.95 | 46,650 | 43,473 |
Offshore | ||||||||
All | −0.01 | 1.36 | 1.32 | 33.61 | 0.89 | 0.95 | 241,034 | 210,031 |
Rain | 0.27 | 0.01 | 2.4 | 56.15 | 0.84 | 0.87 | 22,084 | 19,295 |
No Rain | −0.04 | 1.5 | 1.16 | 30.41 | 0.9 | 0.96 | 218,950 | 190,736 |
Coast | Mean Bias | RMSE | Distance from Shore (km) | Collocations | |||
---|---|---|---|---|---|---|---|
Speed (m s−1) | Direction (°) | Speed (m s−1) | Direction (°) | Speed | Direction | ||
All wind speeds | |||||||
China | 1.82 | 9.86 | 3.64 | 57.93 | 12.6 ± 9.3 | 410 | 409 |
US | 0.27 | 2.61 | 1.38 | 33.36 | 35.9 ± 24.7 | 45,258 | 42,082 |
Wind speeds > 6 m s−1 | |||||||
China | 0.14 | 7.02 | 2.95 | 41.18 | 13.9 ± 10.3 | 190 | 190 |
US | 0.15 | 2.62 | 1.37 | 16.75 | 37.3 ± 24.5 | 23,330 | 21,796 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Li, J.; Li, B.; Liu, J.; Tang, D.; Chen, W.; Yang, H.; Zhou, F.; Zhang, R.; Wang, S.; et al. Evaluation of CFOSAT Scatterometer Wind Data in Global Oceans. Remote Sens. 2021, 13, 1926. https://doi.org/10.3390/rs13101926
Ye H, Li J, Li B, Liu J, Tang D, Chen W, Yang H, Zhou F, Zhang R, Wang S, et al. Evaluation of CFOSAT Scatterometer Wind Data in Global Oceans. Remote Sensing. 2021; 13(10):1926. https://doi.org/10.3390/rs13101926
Chicago/Turabian StyleYe, Haijun, Junmin Li, Bo Li, Junliang Liu, Danling Tang, Wuyang Chen, Hongqiang Yang, Fenghua Zhou, Rongwang Zhang, Sufen Wang, and et al. 2021. "Evaluation of CFOSAT Scatterometer Wind Data in Global Oceans" Remote Sensing 13, no. 10: 1926. https://doi.org/10.3390/rs13101926
APA StyleYe, H., Li, J., Li, B., Liu, J., Tang, D., Chen, W., Yang, H., Zhou, F., Zhang, R., Wang, S., & Tang, S. (2021). Evaluation of CFOSAT Scatterometer Wind Data in Global Oceans. Remote Sensing, 13(10), 1926. https://doi.org/10.3390/rs13101926