Application of Luojia 1-01 Nighttime Images for Detecting the Light Changes for the 2019 Spring Festival in Western Cities, China
Abstract
1. Introduction
2. Datasets
3. Methods
3.1. Data Preprocessing
3.2. Light Area Extraction
Non-light pixel, if L < or = 0
3.3. Average Light Intensity
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Shi, J. How inter-city high-speed rail influences tourism arrivals: Evidence from social media check-in data. Curr. Issues Tour. 2019, 22, 1025–1042. [Google Scholar] [CrossRef]
- Yang, C.; Xiao, M.; Ding, X.; Tian, W.; Zhai, Y.; Chen, J.; Liu, L.; Ye, X. Exploring human mobility patterns using geo-tagged social media data at the group level. J. Spat. Sci. 2019, 64, 221–238. [Google Scholar] [CrossRef]
- Fang, J.; Hu, J.; Shi, X.; Zhao, L. Assessing disaster impacts and response using social media data in China: A case study of 2016 Wuhan rainstorm. Int. J. Disaster. Risk Reduct. 2019, 34, 275–282. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.; Ye, X. Comparing mobility patterns between residents and visitors using geo-tagged social media data. Trans. GIS 2018, 22, 1372–1389. [Google Scholar] [CrossRef]
- Levin, N.; Zhang, Q. A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sens. Environ. 2017, 190, 366–382. [Google Scholar] [CrossRef]
- Levin, N. The impact of seasonal changes on observed nighttime brightness from 2014 to 2015 monthly VIIRS DNB composites. Remote Sens. Environ. 2017, 193, 150–164. [Google Scholar] [CrossRef]
- Croft, T.A. Nighttime images of the earth from space. Sci. Am. 1978, 239, 86–89. [Google Scholar] [CrossRef]
- Zhang, Q.; Schaaf, C.; Seto, K.C. The Vegetation Adjusted NTL Urban Index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Yu, B.L.; Song, W.; Liu, H.X.; Wu, Q.S.; Shi, K.F.; Wu, J.P. A new approach for detecting urban centers and their spatial structure with nighttime light remote sensing. IEEE Trans. Geosci. Remote 2017, 55, 6305–6319. [Google Scholar] [CrossRef]
- Wu, W.J.; Zhao, H.R.; Jiang, S.L. A zipf’s law-based method for mapping urban areas using NPP-VIIRS nighttime light data. Remote Sens. 2018, 10, 130. [Google Scholar] [CrossRef]
- Wang, R.; Wan, B.; Guo, Q.H.; Hu, M.S.; Zhou, S.P. Mapping regional urban extent using NPP-VIIRS DNB and MODIS NDVI data. Remote Sens. 2017, 9, 862. [Google Scholar] [CrossRef]
- Xie, Y.H.; Weng, Q.H.; Fu, P. Temporal variations of artificial nighttime lights and their implications for urbanization in the conterminous United States, 2013–2017. Remote Sens. Environ. 2019, 225, 160–174. [Google Scholar] [CrossRef]
- Jiang, Y.T.; Sun, S.K.; Zheng, S.N. Exploring urban expansion and socioeconomic vitality using NPP-VIIRS data in Xia-Zhang-Quan, China. Sustainability 2019, 11, 1739. [Google Scholar] [CrossRef]
- Shi, K.F.; Yu, B.L.; Huang, Y.X.; Hu, Y.J.; Yin, B.; Chen, Z.Q.; Chen, L.J.; Wu, J.P. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of china at multiple scales: A comparison with DMSP-OLS data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
- Bennett, M.M.; Smith, L.C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, W.M.; Zhou, C.H.; Li, M.C.; Wang, N.; Liu, Q.Y. GDP spatialization and economic differences in south china based on NPP-VIIRS nighttime light imagery. Remote Sens. 2017, 9, 673. [Google Scholar] [CrossRef]
- Román, M.O.; Stokes, E.C. Holidays in lights: Tracking cultural patterns in demand for energy services. Earths Future 2015, 3, 182–205. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Levin, N.; Jendryke, M. Tracing cultural festival patterns using time-series of VIIRS monthly products. Remote Sens. Lett. 2019, 10, 1172–1181. [Google Scholar] [CrossRef]
- Dataset Overview|National Centers of Environment Information (NCEI). Available online: https://data.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/STP/DMSP/iso/xml/G01119.xml&view=getDataView&header=none (accessed on 23 June 2019).
- Zhang, G.; Guo, X.; Li, D.; Jiang, B. Evaluating the potential of LJ1-01 nighttime light data for modeling socio-economic parameters. Sensors 2019, 19, 1465. [Google Scholar] [CrossRef]
- Zhong, X.; Su, Z.; Zhang, G.; Chen, Z.; Meng, Y.; Li, D.; Liu, Y. Analysis and reduction of solar stray light in the nighttime imaging camera of Luojia-1 satellite. Sensors 2019, 19, 1130. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G. Potentiality of using Luojia 1-01 nighttime light imagery to investigate artificial light pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, X.; Li, D.; He, X.; Jendryke, M. A preliminary investigation of Luojia-1 night-time light imagery. Remote Sens. Lett. 2019, 10, 526–535. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping urban extent using Luojia 1-01 nighttime light imagery. Sensors 2018, 18, 3665. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Li, X.; Tong, F.; Li, Z.; Jendryke, M. Mapping urban expansion using night-time light images from Luojia1-01 and International Space Station. Int. J. Remote Sens. 2020, 41, 2603–2623. [Google Scholar] [CrossRef]
- Wang, L.; Chen, R.; Li, D.; Zhang, G.; Shen, X.; Yu, B.; Wu, C.; Xie, S.; Zhang, P.; Li, M.; et al. Initial assessment of the LEO based navigation signal augmentation system from Luojia-1A satellite. Sensors 2018, 18, 3919. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Chen, X.; Sun, J. Assessing the ability of luojia 1-01 imagery to detect feeble nighttime lights. Sensors 2019, 19. [Google Scholar] [CrossRef]
- Ou, J.; Liu, X.; Liu, P.; Liu, X. Evaluation of Luojia 1-01 nighttime light imagery for impervious surface detection: A comparison with NPP-VIIRS nighttime light data. Int. J. Appl. Earth. Obs. 2019, 81, 1–12. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Z.; Yang, C.; Li, Q.; Wu, Q.; Wu, J.; Zhang, G.; Yu, B. Analyzing parcel-level relationships between Luojia 1-01 nighttime light intensity and artificial surface features across Shanghai, China: A comparison with NPP-VIIRS data. Int. J. Appl. Earth Obs. 2020, 85. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J.; Jiang, Y.; Zhou, P.; Zhao, Y.; Xu, Y. On-orbit geometric calibration and validation of Luojia 1-01 night-light satellite. Remote Sens. 2019, 11, 264. [Google Scholar] [CrossRef]
- Zhang, G.; Li, L.; Jiang, Y.; Shen, X.; Li, D. On-orbit relative radiometric calibration of the night-time sensor of the LuoJia1-01 satellite. Sensors 2018, 18, 4225. [Google Scholar] [CrossRef]
- Su, Z.; Zhong, X.; Zhang, G.; Li, Y.; He, X.; Wang, Q.; Wei, Z.; He, C.; Li, D. High sensitive night-time light imaging camera design and in-orbit test of Luojia1-01 satellite. Sensors 2019, 19, 797. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, Q.; Kong, L.; Gu, S.; Zhang, L. Quasi-all-passive thermal control system design and on-orbit validation of Luojia 1-01 satellite. Sensors 2019, 19, 827. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhong, X.; Zhang, G.; Li, D.; Su, Z.; Meng, Y.; Jiang, Y. Thermal stability optimization of the Luojia 1-01 nighttime light remote-sensing camera’s principal distance. Sensors 2019, 19, 990. [Google Scholar] [CrossRef] [PubMed]
- Bu, L.; Xu, Z.; Zhang, G.; Zhang, Z. Night-Light image restoration method based on night scattering model for luojia 1-01 satellite. Sensors 2019, 19. [Google Scholar] [CrossRef]
- Guan, Z.; Jiang, Y.; Wang, J.; Zhang, G. Star-Based Calibration of the Installation Between the Camera and Star Sensor of the Luojia 1-01 Satellite. Remote Sens. 2019, 11. [Google Scholar] [CrossRef]
- Wang, W.; Zhong, X.; Su, Z. On-Orbit Signal-to-Noise Ratio Test Method for Night-Light Camera in Luojia 1-01 Satellite Based on Time-Sequence Imagery. Sensors 2019, 19. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, L. The influence of population movements on the urban relative humidity of Beijing during the Chinese Spring Festival holiday. J. Clean. Prod. 2018, 170, 1508–1513. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, J. Assessing population movement impacts on urban heat island of Beijing during the Chinese New Year holiday: Effects of meteorological conditions. Theor. Appl. Climatol. 2018, 131, 1203–1210. [Google Scholar] [CrossRef]
City | Province | Acquisition Time (YYMMDD) | Festival or Non-Festival Image |
---|---|---|---|
Chengdu | Sichuan | 20181015 | Non-festival |
20190207 | Spring Festival | ||
Panzhihua | Sichuan | 20181212 | Non-festival |
20190208 | Spring Festival | ||
Kunming | Yunnan | 20190208 | Spring Festival |
20190313 | Non-festival | ||
Yuxi | Yunnan | 20181212 | Non-festival |
20190208 | Spring Festival | ||
Lhasa | Xizang | 20181030 | Non-festival |
20190205 | Spring Festival | ||
Jinchang | Gansu | 20181015 | Non-festival |
20190207 | Spring Festival |
City | Time (YYMMDD) | Festival | LA (km2) | ALI 1 | Immig. 2 | Emig. 2 | Net Immig. |
---|---|---|---|---|---|---|---|
Chengdu | 20181015 | Non-festival | 2908.77 | 4651 | 174.00 | 269.25 | −95.25 |
20190207 | Spring Festival | 1236.31↓ 3 | 44535↑ | ||||
Panzhihua | 20181212 | Non-festival | 68.81 | 27042 | 8.90 | 10.00 | −1.10 |
20190208 | Spring Festival | 40.39↓ | 96894↑ | ||||
Kunming | 20190208 | Spring Festival | 1623.34 | 26520 | 158.78 | 118.88 | 39.90 |
20190313 | Non-festival | 2032.58↑ | 19130↓ | ||||
Yuxi | 20181212 | Non-festival | 113.77 | 36436 | 19.55 | 20.09 | −0.54 |
20190208 | Spring Festival | 101.43↓ | 83314↑ | ||||
Lhasa | 20181030 | Non-festival | 117.70 | 43267 | 6.32 | 8.80 | −2.48 |
20190205 | Spring Festival | 50.30↓ | 141350↑ | ||||
Jinchang | 20181015 | Non-festival | 102.35 | 9867 | 3.11 | 3.23 | −0.12 |
20190207 | Spring Festival | 81.66↓ | 20654↑ |
City | LA1 | LA2 | Normalized Change of LA 1 | Immig. | Emig. | Normalized Net Immigration 2 |
---|---|---|---|---|---|---|
Chengdu | 2908.77 | 1236.31 | −0.4035 | 174.00 | 269.25 | −0.2149 |
Panzhihua | 68.81 | 40.39 | −0.2603 | 8.90 | 10.00 | −0.0583 |
Kunming | 1623.34 | 2032.58 | 0.1119 | 158.78 | 118.88 | 0.1438 |
Yuxi | 113.77 | 101.43 | −0.0573 | 19.55 | 20.09 | −0.0135 |
Lhasa | 117.70 | 50.30 | −0.4012 | 6.32 | 8.80 | −0.1642 |
Jinchang | 102.35 | 81.66 | −0.1124 | 3.11 | 3.23 | −0.0193 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Pei, Y.; Li, J.; Qin, Q.; Yue, J. Application of Luojia 1-01 Nighttime Images for Detecting the Light Changes for the 2019 Spring Festival in Western Cities, China. Remote Sens. 2020, 12, 1416. https://doi.org/10.3390/rs12091416
Zhang C, Pei Y, Li J, Qin Q, Yue J. Application of Luojia 1-01 Nighttime Images for Detecting the Light Changes for the 2019 Spring Festival in Western Cities, China. Remote Sensing. 2020; 12(9):1416. https://doi.org/10.3390/rs12091416
Chicago/Turabian StyleZhang, Chengye, Yanqiu Pei, Jun Li, Qiming Qin, and Jun Yue. 2020. "Application of Luojia 1-01 Nighttime Images for Detecting the Light Changes for the 2019 Spring Festival in Western Cities, China" Remote Sensing 12, no. 9: 1416. https://doi.org/10.3390/rs12091416
APA StyleZhang, C., Pei, Y., Li, J., Qin, Q., & Yue, J. (2020). Application of Luojia 1-01 Nighttime Images for Detecting the Light Changes for the 2019 Spring Festival in Western Cities, China. Remote Sensing, 12(9), 1416. https://doi.org/10.3390/rs12091416