Broad-Scale Weather Patterns Encountered during Flight Influence Landbird Stopover Distributions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quantifying Stopover Density and Distributions with Weather Surveillance Radars
2.2. Classifying Synoptic Weather Types
2.3. Statistical Analyses
3. Results
3.1. Frequency of Synoptic Weather Types
3.2. Influence of Synoptic Weather on Stopover Distributions
3.3. Influence of Favorable vs. Unfavorable Synoptic Weather Types on Stopover Distributions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Synoptic Weather Types
Synoptic Weather Type | Description |
---|---|
Bermuda High | This type is a subdivision of Muller’s [33] “Coastal Return” type (with the remainder of the “Coastal Return” type falling under Eastern Continental High). It is very similar to the Eastern Continental High type, but the high-pressure system is centered over the Atlantic Ocean. A ridge of tropical air extends westward from the Atlantic over the southeastern states, and surface winds in the northern Gulf of Mexico may be from the southeast or south. |
East Continental High | This type devised by Yocke et al. [36] subsumes Muller’s [33] “Coastal Return” type as well as some situations that would be classified under Muller’s [33] “Continental High” type. On Eastern Continental High days, winds over the northern Gulf of Mexico are dominated by anticyclonic flow around a high-pressure system located east of the Mississippi River and west of the eastern seaboard, somewhere between the Gulf Coast and southern Canada. Surface winds may be from the east or southeast (eastern areas) or from the south (western areas). |
East Coast Low | This new type described by Yocke et al. [36] is similar to Gulf Front except that the low-pressure system has moved east of the Mississippi River and the front has correspondingly swept over the Gulf of Mexico, through Florida, and into the Atlantic. Winds over the Yucatan on East Coast Low days will generally be unfavorable for the initiation of spring trans-Gulf migration. |
Gulf Front | This type subsumed Yocke et al.’s [36] “Gulf Front or Trough N/S” and “Gulf Front or Trough E/W” types, which correspond respectively to Muller’s [33] “Pacific High” and “Frontal Overrunning” types. On days characterized by this type, cyclonic circulation around a deep surface low over the Mississippi Valley brings mild and dry air following the cold front across the northern Gulf of Mexico. An east-west or northeast-southwest oriented front or trough is located in the northern Gulf of Mexico region within about 100 km of the coastline. Winds in the northern Gulf of Mexico are variable, but generally have a northerly component on the northern or western side of the front and a southerly component on the southern or eastern side. Frequently waves develop along the front over the western Gulf of Mexico, and then sweep northeastward bringing heavy clouds and precipitation to the Gulf Coast. |
Gulf High | This type corresponds to Muller’s [33] type of the same name. On Gulf High days, high pressure is centered over the Gulf of Mexico or over the immediate Gulf Coast and usually associated with a weak pressure gradient and weak or nonexistent winds. |
Midwest Continental High | This type corresponds to Muller’s [33] “Continental High” type. On Midwest Continental High days, winds over the northern Gulf of Mexico are dominated by anticyclonic flow around a high-pressure system centered west of the Mississippi River, over or east of the Rocky Mountains, and north of the Texas/Mexico border. Surface winds are from the northeast, and the region is dominated by fair weather associated with the core of the anticyclone. |
Synoptic Weather Type | Zonal Wind | Meridional Wind | Pressure | Precipitation |
---|---|---|---|---|
Western Gulf Front | −2.28 (0.35) | 2.77 (0.66) | 100872.6 (52.0) | 0.44 (0.05) |
Central Gulf Front | −2.29 (0.33) | 0.34 (0.44) | 101055.9 (46.3) | 0.31 (0.05) |
Eastern Gulf Front | 0.08 (0.54) | −2.08 (0.48) | 101003.3 (44.5) | 0.23 (0.05) |
East Coast Low | 0.20 (0.81) | −2.47 (1.09) | 101152.2 (98.2) | 0.07 (0.02) |
Midwest Continental High | −1.58 (0.85) | −3.84 (1.16) | 101473.3 (99.3) | 0.18 (0.05) |
Eastern Continental High | −6.00 (0.29) | 4.04 (0.47) | 101134.8 (41.2) | 0.13 (0.03) |
Bermuda High | −5.59 (0.23) | 6.93 (0.24) | 101021.7 (30.7) | 0.19 (0.03) |
Gulf High | −4.09 (0.18) | 3.24 (0.25) | 101149.0 (26.7) | 0.08 (0.01) |
Other | −2.96 (0.48) | 4.72 (0.47) | 100844.5 (48.2) | 0.26 (0.06) |
Synoptic Weather Type | Year | ||||||||
---|---|---|---|---|---|---|---|---|---|
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | Total | |
Gulf High | 6 | 11 | 17 | 25 | 26 | 20 | 22 | 14 | 141 |
(0.08) | (0.22) | (0.31) | (0.37) | (0.46) | (0.26) | (0.27) | (0.22) | (0.27) | |
Bermuda High | 13 | 9 | 11 | 8 | 6 | 17 | 19 | 18 | 101 |
(0.18) | (0.18) | (0.20) | (0.12) | (0.11) | (0.22) | (0.23) | (0.28) | (0.19) | |
Central Gulf Front | 7 | 4 | 3 | 8 | 6 | 11 | 9 | 15 | 63 |
(0.10) | (0.08) | (0.05) | (0.12) | (0.11) | (0.14) | (0.11) | (0.23) | (0.12) | |
Eastern Continental High | 17 | 12 | 6 | 9 | 5 | 6 | 3 | 3 | 61 |
(0.23) | (0.24) | (0.11) | (0.13) | (0.09) | (0.08) | (0.04) | (0.05) | (0.12) | |
Other | 17 | 4 | 4 | 3 | 3 | 3 | 6 | 8 | 48 |
(0.23) | (0.08) | (0.07) | (0.04) | (0.05) | (0.04) | (0.07) | (0.12) | (0.09) | |
Western Gulf Front | 6 | 3 | 4 | 6 | 5 | 8 | 8 | 5 | 45 |
(0.08) | (0.06) | (0.07) | (0.09) | (0.09) | (0.10) | (0.10) | (0.08) | (0.09) | |
Eastern Gulf Front | 3 | 3 | 3 | 4 | 4 | 6 | 8 | 2 | 33 |
(0.04) | (0.06) | (0.05) | (0.06) | (0.07) | (0.08) | (0.10) | (0.03) | (0.06) | |
East Coast Low | 1 | 3 | 4 | 5 | 1 | 1 | 4 | 0 | 19 |
(0.01) | (0.06) | (0.07) | (0.07) | (0.02) | (0.01) | (0.05) | (0.00) | (0.04) | |
Midwest Continental High | 3 | 0 | 3 | 0 | 0 | 5 | 2 | 0 | 13 |
(0.04) | (0.00) | (0.05) | (0.00) | (0.00) | (0.06) | (0.02) | (0.00) | (0.02) | |
Yearly Total | 73 | 49 | 55 | 68 | 56 | 77 | 81 | 65 | 524 |
References
- Lack, D. The influence of weather on passerine migration: A review. Auk 1960, 77, 171–209. [Google Scholar] [CrossRef]
- Smith, F. The correlation between the migratory flights of birds and certain accompanying meteorological conditions. Wilson Bull. 1917, 29, 32–35. [Google Scholar]
- Gunn, W.W.H.; Crocker, A.M. Analysis of unusual bird migration in North America during the storm of April 4-7, 1947. Auk 1951, 68, 139–163. [Google Scholar] [CrossRef]
- Richardson, W.J. Timing and amount of bird migration in relation to weather: A review. Oikos 1978, 30, 224. [Google Scholar] [CrossRef]
- La Sorte, F.A.; Hochachka, W.M.; Farnsworth, A.; Sheldon, D.; Fink, D.; Geevarghese, J.; Winner, K.; Van Doren, B.M.; Kelling, S. Migration timing and its determinants for nocturnal migratory birds during autumn migration. J. Anim. Ecol. 2015, 84, 1202–1212. [Google Scholar] [CrossRef] [Green Version]
- Sjöberg, S.; Alerstam, T.; Åkesson, S.; Schulz, A.; Weidauer, A.; Coppack, T.; Muheim, R. Weather and fuel reserves determine departure and flight decisions in passerines migrating across the Baltic Sea. Anim. Behav. 2015, 104, 59–68. [Google Scholar] [CrossRef]
- Bolus, R.T.; Diehl, R.H.; Moore, F.R.; Deppe, J.L.; Ward, M.P.; Smolinsky, J.; Zenzal, T.J. Swainson’s Thrushes do not show strong wind selectivity prior to crossing the Gulf of Mexico. Sci. Rep. 2017, 7, 14280. [Google Scholar] [CrossRef] [Green Version]
- Newton, I. Weather-related mass-mortality events in migrants. Ibis 2007, 149, 453–467. [Google Scholar] [CrossRef]
- Able, K.P. The role of weather variables and flight direction in determining the magnitude of nocturnal bird migration. Ecology 1973, 54, 1031–1041. [Google Scholar] [CrossRef]
- Erni, B.; Liechti, F.; Underhill, L.G.; Bruderer, B. Wind and rain govern the intensity of nocturnal bird migration in central Europe—A log-linear regression analysis. Ardea 2002, 90, 155–166. [Google Scholar]
- Ma, Z.; Hua, N.; Zhang, X.; Guo, H.; Zhao, B.; Ma, Q.; Xue, W.; Tang, C. Wind conditions affect stopover decisions and fuel stores of shorebirds migrating through the south Yellow Sea. Ibis 2011, 153, 755–767. [Google Scholar] [CrossRef]
- Nisbet, I.C.T.; Drury, W.H. Short-term effects of weather on bird migration: A field study using multivariate statistics. Anim. Behav. 1968, 16, 496–530. [Google Scholar] [CrossRef]
- Wainwright, C.E.; Stepanian, P.M.; Horton, K.G. The role of the US Great Plains low-level jet in nocturnal migrant behavior. Int. J. Biometeorol. 2016, 60, 1531–1542. [Google Scholar] [CrossRef] [PubMed]
- Bloch, R.; Bruderer, B. The air speed of migrating birds and its relationship to the wind. Behav. Ecol. Sociobiol. 1982, 11, 19–24. [Google Scholar] [CrossRef]
- Shamoun-Baranes, J.; Baharad, A.; Alpert, P.; Berthold, P.; Yom-Tov, Y.; Dvir, Y.; Leshem, Y. The effect of wind, season and latitude on the migration speed of white storks Ciconia ciconia, along the eastern migration route. J. Avian Biol. 2003, 34, 97–104. [Google Scholar] [CrossRef]
- Vansteelant, W.M.G.; Bouten, W.; Klaassen, R.H.G.; Koks, B.J.; Schlaich, A.E.; van Diermen, J.; van Loon, E.E.; Shamoun-Baranes, J. Regional and seasonal flight speeds of soaring migrants and the role of weather conditions at hourly and daily scales. J. Avian Biol. 2015, 46, 25–39. [Google Scholar] [CrossRef]
- Alerstam, T. Wind as selective agent in bird migration. Ornis Scand. 1979, 10, 76. [Google Scholar] [CrossRef]
- Horton, K.G.; Van Doren, B.M.; Stepanian, P.M.; Hochachka, W.M.; Farnsworth, A.; Kelly, J.F. Nocturnally migrating songbirds drift when they can and compensate when they must. Sci. Rep. 2016, 6, 21249. [Google Scholar] [CrossRef] [Green Version]
- Van Doren, B.M.; Horton, K.G.; Stepanian, P.M.; Mizrahi, D.S.; Farnsworth, A. Wind drift explains the reoriented morning flights of songbirds. Behav. Ecol. 2016, 27, 1122–1131. [Google Scholar] [CrossRef] [Green Version]
- Åkesson, S.; Hedenström, A. Wind selectivity of migratory flight departures in birds. Behav. Ecol. Sociobiol. 2000, 47, 140–144. [Google Scholar] [CrossRef]
- Deppe, J.L.; Ward, M.P.; Bolus, R.T.; Diehl, R.H.; Celis-Murillo, A.; Zenzal, T.J.; Moore, F.R.; Benson, T.J.; Smolinsky, J.A.; Schofield, L.N.; et al. Fat, weather, and date affect migratory songbirds’ departure decisions, routes, and time it takes to cross the Gulf of Mexico. Proc. Natl. Acad. Sci. USA 2015, 112, E6331–E6338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morganti, M.; Mellone, U.; Bogliani, G.; Saino, N.; Ferri, A.; Spina, F.; Rubolini, D. Flexible tuning of departure decisions in response to weather in black redstarts Phoenicurus ochruros migrating across the Mediterranean Sea. J. Avian Biol. 2011, 42, 323–334. [Google Scholar] [CrossRef]
- Schaub, M.; Liechti, F.; Jenni, L. Departure of migrating European robins, Erithacus rubecula, from a stopover site in relation to wind and rain. Anim. Behav. 2004, 67, 229–237. [Google Scholar] [CrossRef]
- Van Doren, B.M.; Horton, K.G. A continental system for forecasting bird migration. Science 2018, 361, 1115–1118. [Google Scholar] [CrossRef]
- Moore, F.; Kerlinger, P. Stopover and fat deposition by North American wood-warblers (Parulinae) following spring migration over the Gulf of Mexico. Oecologia 1987, 74, 47–54. [Google Scholar] [CrossRef]
- Moore, F.R.; Kerlinger, P.; Simons, T. Stopover on a Gulf Coast barrier island by spring trans-Gulf migrants. Wilson Bull. 1990, 102, 487–500. [Google Scholar]
- Pielke, R.A.; Garstang, M.; Lindsey, C.; Gusdorf, J. Use of a synoptic classification scheme to define seasons. Theor. Appl. Climatol. 1987, 38, 57–68. [Google Scholar] [CrossRef]
- Sheridan, S.C. The redevelopment of a weather-type classification scheme for North America. Int. J. Climatol. 2002, 22, 51–68. [Google Scholar] [CrossRef]
- Diem, J.E. Influences of the Bermuda High and atmospheric moistening on changes in summer rainfall in the Atlanta, Georgia region, USA. Int. J. Climatol. 2013, 33, 160–172. [Google Scholar] [CrossRef]
- Hardin, A.W.; Liu, Y.; Cao, G.; Vanos, J.K. Urban heat island intensity and spatial variability by synoptic weather type in the northeast U.S. Urban Clim. 2018, 24, 747–762. [Google Scholar] [CrossRef]
- Lewis, A.B.; Keim, B.D. A hybrid procedure for classifying synoptic weather types for Louisiana, USA. Int. J. Climatol. 2015, 35, 4247–4261. [Google Scholar] [CrossRef]
- Muller, R.A.; Wax, C.L. A comparative synoptic climatic baseline for coastal Louisiana. Geosci. Man 1977, 18, 121–129. [Google Scholar]
- Muller, R.A. A synoptic climatology for environmental baseline analysis: New Orleans. J. Appl. Meteorol. 1977, 16, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Mickley, L.J.; Tai, A.P.K. Influence of synoptic patterns on surface ozone variability over the eastern United States from 1980 to 2012. Atmos. Chem. Phys. 2015, 15, 10925–10938. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, S.C.; Pirhalla, D.E.; Lee, C.C.; Ransibrahmanakul, V. Evaluating linkages of weather patterns and water quality responses in south Florida using a synoptic climatological approach. J. Appl. Meteorol. Climatol. 2013, 52, 425–438. [Google Scholar] [CrossRef] [Green Version]
- Yocke, M.A.; Emery, C.A.; Roberts, P.; MacDonald, C.; Ladner, D.; Prouty, J.; Barnett, A. Meteorology of the northeastern Gulf of Mexico: Data from 1995 to 1997, Final Report; U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region: New Orleans, LA, USA, 2000.
- Zhu, J.; Liang, X.Z. Impacts of the Bermuda high on regional climate and ozone over the United States. J. Clim. 2013, 26, 1018–1032. [Google Scholar] [CrossRef]
- Richardson, W.J. Timing of bird migration in relation to weather: Updated review. In Bird Migration; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 1990; pp. 78–101. ISBN 978-3-642-74544-7. [Google Scholar]
- Dokter, A.M.; Shamoun-Baranes, J.; Kemp, M.U.; Tijm, S.; Holleman, I. High altitude bird migration at temperate latitudes: A synoptic perspective on wind assistance. PLoS ONE 2013, 8, e52300. [Google Scholar] [CrossRef] [Green Version]
- Yaukey, P.H.; Powell, S.C. Numbers of migratory birds stopping over in New Orleans, Louisiana, USA in relation to weather. Wilson J. Ornithol. 2008, 120, 286–295. [Google Scholar] [CrossRef]
- Alerstam, T. Detours in bird migration. J. Theor. Biol. 2001, 209, 319–331. [Google Scholar] [CrossRef]
- Erni, B.; Liechti, F.; Bruderer, B. The role of wind in passerine autumn migration between Europe and Africa. Behav. Ecol. 2005, 16, 732–740. [Google Scholar] [CrossRef] [Green Version]
- La Sorte, F.A.; Fink, D.; Hochachka, W.M.; Farnsworth, A.; Rodewald, A.D.; Rosenberg, K.V.; Sullivan, B.L.; Winkler, D.W.; Wood, C.; Kelling, S. The role of atmospheric conditions in the seasonal dynamics of North American migration flyways. J. Biogeogr. 2014, 41, 1685–1696. [Google Scholar] [CrossRef]
- Shamoun-Baranes, J.; Liechti, F.; Vansteelant, W.M.G. Atmospheric conditions create freeways, detours and tailbacks for migrating birds. J. Comp. Physiol. A 2017, 203, 509–529. [Google Scholar] [CrossRef]
- Horton, K.G.; Van Doren, B.M.; La Sorte, F.A.; Cohen, E.B.; Clipp, H.L.; Buler, J.J.; Fink, D.; Kelly, J.F.; Farnsworth, A. Holding steady: Little change in intensity or timing of bird migration over the Gulf of Mexico. Glob. Chang. Biol. 2019, 25, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.B.; Barrow, W.C.; Buler, J.J.; Deppe, J.L.; Farnsworth, A.; Marra, P.P.; McWilliams, S.R.; Mehlman, D.W.; Wilson, R.R.; Woodrey, M.S.; et al. How do en route events around the Gulf of Mexico influence migratory landbird populations? Condor 2017, 119, 327–343. [Google Scholar] [CrossRef]
- Lowery, G.H. Evidence of Trans-Gulf Migration. Auk 1946, 63, 175–211. [Google Scholar] [CrossRef]
- Russell, R.W. Interactions between Migrating Birds and Offshore Oil and Gas Platforms in the Northern Gulf of Mexico: Final Report; U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region: New Orleans, LA, USA, 2005.
- Buler, J.J.; Dawson, D.K. Radar analysis of fall bird migration stopover sites in the northeastern U.S. Condor 2014, 116, 357–370. [Google Scholar] [CrossRef] [Green Version]
- Buler, J.J.; Diehl, R.H. Quantifying bird density during migratory stopover using weather surveillance radar. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2741–2751. [Google Scholar] [CrossRef]
- Buler, J.J.; Moore, F.R. Migrant-habitat relationships during stopover along an ecological barrier: Extrinsic constraints and conservation implications. J. Ornithol. 2011, 152, 101–112. [Google Scholar] [CrossRef]
- Buler, J.J.; Moore, F.R.; Woltmann, S. A multi-scale examination of stopover habitat use by birds. Ecology 2007, 88, 1789–1802. [Google Scholar] [CrossRef] [Green Version]
- Lafleur, J.M.; Buler, J.J.; Moore, F.R. Geographic position and landscape composition explain regional patterns of migrating landbird distributions during spring stopover along the northern coast of the Gulf of Mexico. Landsc. Ecol. 2016, 31, 1697–1709. [Google Scholar] [CrossRef]
- Gauthreaux, S.A. A radar and direct visual study of passerine spring migration in southern Louisiana. Auk 1971, 88, 343–365. [Google Scholar] [CrossRef]
- McLaren, J.D.; Buler, J.J.; Schreckengost, T.; Smolinsky, J.A.; Boone, M.; Emiel van Loon, E.; Dawson, D.K.; Walters, E.L. Artificial light at night confounds broad-scale habitat use by migrating birds. Ecol. Lett. 2018, 21, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American Regional Reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Cabrera-Cruz, S.A.; Mabee, T.J.; Patraca, R.V. Using theoretical flight speeds to discriminate birds from insects in radar studies. Condor 2013, 115, 263–272. [Google Scholar] [CrossRef]
- Larkin, R.P. Flight speeds observed with radar, a correction: Slow “birds” are insects. Behav. Ecol. Sociobiol. 1991, 29, 221–224. [Google Scholar] [CrossRef]
- Buler, J.J.; Barrow, W.C.; Boone, M.E.; Dawson, D.K.; Diehl, R.H.; Moore, F.R.; Randall, L.A.; Schreckengost, T.D.; Smolinsky, J.A. Linking animals aloft with the terrestrial landscape. In Aeroecology; Springer International Publishing: Cham, Switzerland, 2017; pp. 347–378. [Google Scholar]
- Able, K.P. A radar study of the altitude of nocturnal passerine migration. Bird-Banding 1970, 41, 282. [Google Scholar] [CrossRef]
- Kerlinger, P.; Moore, F.R. Atmospheric structure and avian migration. In Current Ornithology; Springer: Boston, MA, USA, 1989; pp. 109–142. [Google Scholar]
- Gauthreaux, S.A. The flight behavior of migrating birds in changing wind fields: Radar and visual analyses. Integr. Comp. Biol. 1991, 31, 187–204. [Google Scholar] [CrossRef] [Green Version]
- Homer, C.G.; Dewitz, J.A.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.D.; Wickham, J.D.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogramm. Eng. Remote Sensing 2015, 81, 345–354. [Google Scholar]
- Andueza, M.; Arizaga, J.; Jorge Belda, E.; Barba, E. The role of extrinsic and intrinsic factors on the departure decisions of a long-distance migratory passerine. Ardeola 2013, 60, 59–72. [Google Scholar] [CrossRef]
- Arizaga, J.; Belda, E.J.; Barba, E. Effect of fuel load, date, rain and wind on departure decisions of a migratory passerine. J. Ornithol. 2011, 152, 991–999. [Google Scholar] [CrossRef]
- Covino, K.M.; Holberton, R.L.; Morris, S.R. Factors influencing migratory decisions made by songbirds on spring stopover. J. Avian Biol. 2015, 46, 73–80. [Google Scholar] [CrossRef]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Rule of Thumb for Interpreting the Size of a Correlation Coefficient. In Applied Statistics for the Behavioral Sciences, 5th ed.; Houghton Mifflin: Boston, MA, USA, 2003; Volume 5, ISBN 0618124055. [Google Scholar]
- De’ath, G. Boosted regression trees for ecological modeling and prediction. Ecology 2007, 88, 243–251. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J.; Hijmans, M.R.J. Package “dismo”. 2017. Available online: https://cran.r-project.org/web/packages/dismo/dismo.pdf (accessed on 16 August 2017).
- Dokter, A.M.; Farnsworth, A.; Fink, D.; Ruiz-Gutierrez, V.; Hochachka, W.M.; La Sorte, F.A.; Robinson, O.J.; Rosenberg, K.V.; Kelling, S. Seasonal abundance and survival of North America’s migratory avifauna determined by weather radar. Nat. Ecol. Evol. 2018, 2, 1603–1609. [Google Scholar] [CrossRef]
- Gauthreaux, S.A.; Belser, C.G.; Welch, C.M. Atmospheric trajectories and spring bird migration across the Gulf of Mexico. J. Ornithol. 2006, 147, 317–325. [Google Scholar] [CrossRef]
- Gauthreaux, S.A.; Michi, J.E.; Belser, C.G. The temporal and spatial structure of the atmosphere and its influence on bird migration strategies. In Birds of Two Worlds: The Ecology and Evolution of Migration; Greenberg, R., Marra, P.P., Eds.; University Press/Wiley: West Sussex, UK, 2005; pp. 182–192. [Google Scholar]
- Able, K.P. Fall migration in coastal Louisiana and the evolution of migration patterns in the Gulf region. Wilson Bull. 1972, 84, 231–242. [Google Scholar]
- Gill, R.E.; Tibbitts, T.L.; Douglas, D.C.; Handel, C.M.; Mulcahy, D.M.; Gottschalck, J.C.; Warnock, N.; McCaffery, B.J.; Battley, P.F.; Piersma, T. Extreme endurance flights by landbirds crossing the Pacific Ocean: Ecological corridor rather than barrier? Proc. R. Soc. B Biol. Sci. 2009, 276, 447–457. [Google Scholar] [CrossRef] [Green Version]
- La Sorte, F.A.; Fink, D. Projected changes in prevailing winds for transatlantic migratory birds under global warming. J. Anim. Ecol. 2017, 86, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Alerstam, T. Ecological causes and consequences of bird orientation. Experientia 1990, 46, 405–415. [Google Scholar] [CrossRef]
- Liechti, F. Birds: Blowin’ by the wind? J. Ornithol. 2006, 147, 202–211. [Google Scholar] [CrossRef]
- Dänhardt, J.; Lindström, Å. Optimal departure decisions of songbirds from an experimental stopover site and the significance of weather. Anim. Behav. 2001, 62, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Schmaljohann, H.; Liechti, F.; Bruderer, B. Daytime passerine migrants over the Sahara—Are these diurnal migrants or prolonged flights of nocturnal migrants? Ostrich 2007, 78, 357–362. [Google Scholar] [CrossRef]
- Schmaljohann, H.; Liechti, F.; Bruderer, B. Songbird migration across the Sahara: The non-stop hypothesis rejected! Proc. R. Soc. B Biol. Sci. 2006, 274, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Jenni-Eiermann, S.; Almasi, B.; Maggini, I.; Salewski, V.; Bruderer, B.; Liechti, F.; Jenni, L. Numbers, foraging and refuelling of passerine migrants at a stopover site in the western Sahara: Diverse strategies to cross a desert. J. Ornithol. 2011, 152, 113–128. [Google Scholar] [CrossRef]
- Drake, V.; Farrow, R.A. The influence of atmospheric structure and motions on insect migration. Annu. Rev. Entomol. 1988, 33, 183–210. [Google Scholar] [CrossRef]
- Huff, F.A. Relation between leafhopper influxes and synoptic weather conditions. J. Appl. Meteorol. 1963, 2, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Pienkowski, R.L.; Medler, J.T. Synoptic weather conditions associated with long-range movement of the potato leafhopper, Empoasca fabae, into Wisconsin. Ann. Entomol. Soc. Am. 1964, 57, 588–591. [Google Scholar] [CrossRef]
- Kisimoto, R. Synoptic weather conditions inducing long-distance immigration of planthoppers, Sogatella furcifera Horvath and Nilaparvata lugens Stal. Ecol. Entomol. 1976, 1, 95–109. [Google Scholar] [CrossRef]
- Gregg, P.C.; Fitt, G.P.; Coombs, M.; Henderson, G.S. Migrating moths collected in tower-mounted light traps in northern New South Wales, Australia: Influence of local and synoptic weather. Bull. Entomol. Res. 1994, 84, 17–30. [Google Scholar] [CrossRef]
- Yong, W.; Moore, F.R. Spring stopover of intercontinental migratory thrushes along the northern coast of the Gulf of Mexico. Auk 1997, 114, 263–278. [Google Scholar] [CrossRef] [Green Version]
- Horton, K.G.; Nilsson, C.; Van Doren, B.M.; La Sorte, F.A.; Dokter, A.M.; Farnsworth, A. Bright lights in the big cities: Migratory birds’ exposure to artificial light. Front. Ecol. Environ. 2019, 17, 209–214. [Google Scholar] [CrossRef]
- La Sorte, F.A.; Fink, D.; Buler, J.J.; Farnsworth, A.; Cabrera-Cruz, S.A. Seasonal associations with urban light pollution for nocturnally migrating bird populations. Glob. Chang. Biol. 2017, 23, 4609–4619. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Cruz, S.A.; Cohen, E.B.; Smolinsky, J.A.; Buler, J.J. Artificial light at night is related to broad-scale stopover distributions of nocturnally migrating landbirds along the Yucatan Peninsula, Mexico. Remote Sens. 2020, 12, 395. [Google Scholar] [CrossRef] [Green Version]
- Doyle, T.W.; Krauss, K.W.; Conner, W.H.; From, A.S. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise. For. Ecol. Manage. 2010, 259, 770–777. [Google Scholar] [CrossRef]
Synoptic Weather Type | Interaction: Longitude | Interaction: Distance from the GOM Coast |
---|---|---|
Western Gulf Front | 61.3 | 146.8 |
Central Gulf Front | 28.4 | 22.4 |
Eastern Gulf Front | 10.1 | 0.4 |
East Coast Low | 151.3 | 5.2 |
Midwest Continental High | 42.7 | 222.7 |
Eastern Continental High | 2.9 | 0.0 |
Bermuda High | 7.0 | 13.2 |
Gulf High | 1.0 | 2.6 |
Other | 5.1 | 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clipp, H.L.; Cohen, E.B.; Smolinsky, J.A.; Horton, K.G.; Farnsworth, A.; Buler, J.J. Broad-Scale Weather Patterns Encountered during Flight Influence Landbird Stopover Distributions. Remote Sens. 2020, 12, 565. https://doi.org/10.3390/rs12030565
Clipp HL, Cohen EB, Smolinsky JA, Horton KG, Farnsworth A, Buler JJ. Broad-Scale Weather Patterns Encountered during Flight Influence Landbird Stopover Distributions. Remote Sensing. 2020; 12(3):565. https://doi.org/10.3390/rs12030565
Chicago/Turabian StyleClipp, Hannah L., Emily B. Cohen, Jaclyn A. Smolinsky, Kyle G. Horton, Andrew Farnsworth, and Jeffrey J. Buler. 2020. "Broad-Scale Weather Patterns Encountered during Flight Influence Landbird Stopover Distributions" Remote Sensing 12, no. 3: 565. https://doi.org/10.3390/rs12030565