Object-Based Mapping of Gullies Using Optical Images: A Case Study in the Black Soil Region, Northeast of China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Image Data
2.2.2. Reference Data from the Field Survey
3. Method
3.1. Data Preparation
3.1.1. GE Image Segmentation
3.1.2. Object-Based Explanatory Features Generation
3.2. Gully Mapping Using Machine Learning Methods
3.2.1. Tree-Based Pipeline Optimization Tool (TPOT)
3.2.2. LightGBM
3.2.3. Stacking
3.3. Revision of Preliminary Gully Extraction
3.4. Validation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, H. Uuited nations: convention to combat desertification in those countries experiencing serious drought and/or desertification, particularly in Africa. Int. Leg. Mater. 1994, 33, 1328–1382. [Google Scholar]
- Ibrahim, A.H.; Yaro, N.A.; Adebola, A.O. Assessing the socio-economic impact of gully erosion in Chikun Local Government Area, Kaduna State, Nigeria. Sci. World J. 2017, 5, 30–41. [Google Scholar]
- Jahantigh, M.; Pessarakli, M. Causes and effects of gully erosion on agricultural lands and the environment. Commun. Soil Sci. Plant Anal. 2011, 42, 2250–2255. [Google Scholar] [CrossRef]
- Li, H.; Cruse, R.M.; Bingner, R.L.; Gesch, K.R.; Zhang, X. Evaluating ephemeral gully erosion impact on Zea mays L. yield and economics using AnnAGNPS. Soil Tillage Res. 2016, 155, 157–165. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Yang, P. Soil erosion and its relationship to the spatial distribution of land use patterns in the Lancang River Watershed, Yunnan Province, China. Agric. Sci. 2015, 6, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Zaimes, G.N.; Schultz, R.C. Assessing riparian conservation land management practice impacts on gully erosion in Iowa. Environ. Manag. 2012, 49, 1009–1021. [Google Scholar] [CrossRef] [PubMed]
- Zakerinejad, R.; Maerker, M. An integrated assessment of soil erosion dynamics with special emphasis on gully erosion in the Mazayjan basin, southwestern Iran. Nat. Hazards 2015, 79, 25–50. [Google Scholar] [CrossRef]
- Kheir, R.B.; Hansmann, B.; Abdallah, C. Detecting major environmental parameters influencing the gully erosion occurrence in Mediterranean karst landscapes of Lebanon using remote sensing and GIS statistical correlations. In Proceedings of the Egu General Assembly Conference, Vienna, Austria, 2–7 May 2010. [Google Scholar]
- Pu, L.; Zhang, S.; Wang, R.; Chang, L.; Yang, J. Analysis of erosion gully information extraction based on multi-resource remote sensing images. Geogr. Geo-Inf. Sci. 2016, 32, 90–94. (In Chinese) [Google Scholar]
- Wang, R.; Zhang, S.; Pu, L.; Yang, J.; Yang, C.; Chen, J.; Guan, C.; Wang, Q.; Chen, D.; Fu, B. Gully erosion mapping and monitoring at multiple scales based on multi-source remote sensing data of the Sancha River Catchment, Northeast China. ISPRS Int. J. Geo-Inf. 2016, 5, 200. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Zhang, S.W.; Yue, S. Classification of erosion gullies by remote sensing and spatial pattern analysis in black soil region of eastern Kebai. Acta Geogr. Sinica 2007, 27, 193–199. (In Chinese) [Google Scholar]
- Garosi, Y.; Sheklabadi, M.; Conoscenti, C.; Pourghasemi, H.R.; Van Oost, K. Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Sci. Total Environ. 2019, 664, 1117–1132. [Google Scholar] [CrossRef] [PubMed]
- Garosi, Y.; Sheklabadi, M.; Pourghasemi, H.R.; Besalatpour, A.A.; Conoscenti, C.; Oost, K.V. Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma 2018, 330, 65–78. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Evaluating the information content of JERS-1 SAR and Landsat TM data for discrimination of soil erosion features. ISPRS J. Photogramm. Remote Sens. 1998, 53, 143–153. [Google Scholar] [CrossRef]
- Rahmati, O.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Feizizadeh, B. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology 2017, 298, S0169555X16308418. [Google Scholar] [CrossRef]
- Blaschke, T.; Strobl, J. What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS Interfacing Remote Sensing and GIS. Z. Geoinf. 2001, 6, 12–17. [Google Scholar]
- Karami, A.; Khoorani, A.; Noohegar, A.; Shamsi, S.R.F.; Moosavi, V. Gully erosion mapping using object-based and pixel-based image classification methods. Environ. Eng. Geosci. 2015, 21, 101–110. [Google Scholar] [CrossRef]
- D’Oleire-Oltmanns, S.; Marzolff, I.; Tiede, D.; Blaschke, T. Detection of gully-affected areas by applying object-based image analysis (OBIA) in the region of Taroudannt, Morocco. Remote Sens. 2014, 6, 8287–8309. [Google Scholar] [CrossRef] [Green Version]
- Shruthi, R.B.V.; Kerle, N.; Jetten, V. Object-based gully feature extraction using high spatial resolution imagery. Geomorphology 2011, 134, 260–268. [Google Scholar] [CrossRef]
- Shruthi, R.B.V.; Kerle, N.; Jetten, V.; Abdellah, L.; Machmach, I. Quantifying temporal changes in gully erosion areas with object oriented analysis. Catena 2015, 128, 262–277. [Google Scholar] [CrossRef]
- Eustace, A.H.; Pringle, M.J.; Denham, R.J. A risk map for gully locations in central Queensland, Australia. Eur. J. Soil Sci. 2011, 62, 431–441. [Google Scholar] [CrossRef]
- Liu, K.; Ding, H.; Tang, G.; Song, C.; Liu, Y.; Jiang, L.; Zhao, B.; Gao, Y.; Ma, R. Large-scale mapping of gully-affected areas: An approach integrating Google Earth images and terrain skeleton information. Geomorphology 2018, 314, 13–26. [Google Scholar] [CrossRef]
- Liu, K.; Ding, H.; Tang, G.; Zhu, A.; Yang, X.; Jiang, S.; Cao, J. An object-based approach for two-level gully feature mapping using high-resolution DEM and imagery: A case study on hilly loess plateau region, China. Chin. Geogr. Sci. 2017, 27, 415–430. [Google Scholar] [CrossRef]
- Shruthi, R.B.V.; Kerle, N.; Jetten, V.; Stein, A. Object-based gully system prediction from medium resolution imagery using Random Forests. Geomorphology 2014, 216, 283–294. [Google Scholar] [CrossRef]
- Díaz-Uriarte, R.; Andrés, S.A.D. Gene selection and classification of microarray data using random forest. BMC Bioinform. 2006, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Chen, T.; Carlos, G. XGBoost: A scalable tree boosting system. In Proceedings of the ACM Sigkdd International Conference on Knowledge Discovery & Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T. LightGBM: A highly efficient gradient boosting decision tree. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Babajide, M.I.; Saeed, F. Bioactive molecule prediction using Extreme Gradient Boosting. Molecules 2016, 21, 983. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, R.P.; Wang, W.M.; Liaw, A.; Ma, J.; Gifford, E.M. Extreme Gradient Boosting as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 2016, 56, 2353. [Google Scholar] [CrossRef]
- Castillo, C.; Taguas, E.V.; Zarco-Tejada, P.; James, M.R.; Gómez, J.A. The normalized topographic method: an automated procedure for gully mapping using GIS. Earth Surf. Process. Landf. 2015, 39, 2002–2015. [Google Scholar] [CrossRef]
- Evans, M.; Lindsay, J. High resolution quantification of gully erosion in upland peatlands at the landscape scale. Earth Surf. Process. Landf. 2010, 35, 876–886. [Google Scholar] [CrossRef]
- Guo, Z.; Shao, X.; Xu, Y.; Miyazaki, H.; Ohira, W.; Shibasaki, R. Identification of village building via google earth images and supervised machine learning methods. Remote Sens. 2016, 8, 271. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, A.; Meyer, H.; Higginbottom, T.; Nauss, T. Classifying Google Earth images as training sites for application to a larger scale monitoring of bush encroachment in South Africa. In Proceedings of the Egu General Assembly, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China (MWR). Bulletin on Soil and Water Conservation of the First National Water Conservancy Census; China Water Power Press: Beijing, China, 2013. (In Chinese)
- Tang, L.; Meng, L.; Zhang, F. Mechanism of gully development on slope farmland in black soil area, China. J. Anhui Agric. Sci. 2012, 40, 819–821. (In Chinese) [Google Scholar]
- Fan, H.; Gu, G.; Wang, Y.; Zhong, Y. Gully erosion development and environmental characteristics in the black soil region of Northeast China. Soil Water Conserv. China 2013, 10, 75–78. (In Chinese) [Google Scholar]
- Bai, J.; Hui, L. Preliminary investigation on the development and harm of erosion gully in the black soil area of Northeast China. Soil Water Conserv. China 2015, 8, 68–70. (In Chinese) [Google Scholar]
- Du, G.; Lei, G.; Zong, X. Analysis on spatial pattern of gully erosion across typical black hilly region of Northeast China. Res. Soil Water Conserv. 2011, 18, 94–97. (In Chinese) [Google Scholar]
- Yan, Y.; Zhang, S.; Li, X. Temporal and spatial variation of erosion gullies in Kebai black soil region of Heilongjiang during the past 50 years. Acta Geogr. Sinica 2005, 60, 1015–1020. (In Chinese) [Google Scholar]
- Yan, Y.; Zhang, S.; Yue, S. Application of Corona and Spot imagery on erosion gully research in typical black soil regions of Northeast China. Resour. Sci. 2006, 6, 154–160. (In Chinese) [Google Scholar]
- Wang, W.; Deng, R.; Zhang, S. Preliminary research on risk evaluation of gully erosion in typical black soil area of Northeast China. J. Nat. Resour. 2014, 29, 2058–2067. [Google Scholar]
- Wang, W.; Zhang, S.; Fang, H. Coupling mechanism of slope-gully erosion in typical black soil area of Northeast China. J. Nat. Resour. 2012, 27, 2113–2122. [Google Scholar]
- Xu, X.Z.; Xu, Y.; Chen, S.C.; Xu, S.G.; Zhang, H.W. Soil loss and conservation in the black soil region of Northeast China: a retrospective study. Environ. Sci. Policy 2010, 13, 793–800. [Google Scholar] [CrossRef]
- Platoncheva, E.V. Investigation of the dynamics of ephemeral gully erosion on arable land of the forest-steppe and steppe zone of the East of the Russian Plain from remote sensing data. In Iop Conference Series: Earth & Environmental Science; IOP Publishing: Bristol, UK, 2018; p. 012019. [Google Scholar]
- Wang, Q.; Xu, J.; Cheng, Y.; Li, J.; Wang, X. Influence of the varied spatial resolution of remote sensing images on urban and rural residential information extraction. Resour. Sci. 2012, 34, 159–165. (In Chinese) [Google Scholar]
- Baatz, M.; Schäpe, A. Multiresolution segmentation—An optimization approach for high quality multi-scale image segmentation. Angew. Geogaraphische Inf. Sev. 2000, 12, 12–23. [Google Scholar]
- Martha, T.R.; Kerle, N.; Van Westen, C.J. Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4928–4943. [Google Scholar] [CrossRef]
- Drăguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar]
- Woodcock, C.E.; Strahler, A.H. The factor of scale in remote sensing. Remote Sens. Environ. 1987, 21, 311–332. [Google Scholar] [CrossRef]
- Clinton, N.; Holt, A.; Scarborough, J.; Li, Y.; Peng, G. Accuracy assessment measures for object-based image segmentation goodness. Photogramm. Eng. Remote Sens. 2010, 76, 289–299. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; Meer, F.V.D.; Werff, H.V.D.; Coillie, F.V. Geographic object-based image analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. Stud. Media Commun. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Olson, R.S.; Bartley, N.; Urbanowicz, R.J.; Moore, J.H. Evaluation of a tree-based pipeline optimization tool for automating data science. In Proceedings of the Genetic & Evolutionary Computation Conference, Denver, CO, USA, 20–24 July 2016. [Google Scholar]
- Olson, R.S.; Urbanowicz, R.J.; Andrews, P.C.; Lavender, N.A.; Kidd, L.C.; Moore, J.H. Automating biomedical data science through tree-based pipeline optimization. In Proceedings of the European Conference on the Applications of Evolutionary Computation, Porto, Portugal, 30 March–1 April 2016. [Google Scholar]
- Shi, H. Best-First Decision Tree Learning; The University of Waikato: Hamilton, New Zealand, 2007. [Google Scholar]
- Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Drăguţ, L.; Eisank, C. Automated object-based classification of topography from SRTM data. Geomorphology 2012, 141, 21–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Liu, Y.; Bian, L.; Meng, Y.; Wang, H.; Zhang, S.; Yang, Y.; Shao, X.; Wang, B.O. Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis. ISPRS J. Photogramm. Remote Sens. 2012, 68, 144–156. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, Á.; Conoscenti, C.; Angileri, S.E.; Rotigliano, E.; Schnabel, S. Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: advantages and limitations. Nat. Hazards 2015, 79, 291–314. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Kok, K.; Verburg, P.H.; Cammeraat, L.H. Identification of vulnerable areas for gully erosion under different scenarios of land abandonment in Southeast Spain. Catena 2007, 71, 110–121. [Google Scholar]
- Showers, K.B. Soil erosion in the Kingdom of Lesotho and development of historical environmental impact assessment. Ecol. Appl. 1996, 6, 653–664. [Google Scholar] [CrossRef]
- Qin, W.; Zuo, C.; Fan, J.; Xu, X.; Xu, J. Control measures for gully erosion in black soil areas of Northeast China. China Water Resour. 2014, 20, 37–41. (In Chinese) [Google Scholar]
Image Data | Object Features | Variables Extracted |
---|---|---|
GE images | Spectral features | Red, green, blue, ratio_RG, ratio_RB, ratio_GB, brightness, max. diff, standard deviation of red; green; blue, and VI’; |
Textural features | GLCM homogeneity, contrast, mean, stdDev, correlation, dissimilarity, entropy, and ang. 2nd moment; | |
Geometrical features | Area, length, width, length/width, border length, rel. border to image border, border index, asymmetry, compactness, roundness, density, main direction, elliptic fit, rectangular fit, shape index, radius of largest enclosed ellipse, and radius of smallest enclosing ellipse. |
Scale | Shape | Compactness | OS (%) | US (%) | ED (%) |
---|---|---|---|---|---|
50 | 0.1 | 0 | 19.3 | 20.2 | 19.8 |
50 | 0.1 | 0.1 | 17.1 | 20.0 | 18.6 |
50 | 0.1 | 0.2 | 18.7 | 19.0 | 18.8 |
50 | 0.1 | 0.3 | 20.3 | 19.3 | 19.8 |
50 | 0.1 | 0.4 | 16.9 | 20.4 | 18.7 |
50 | 0.1 | 0.5 | 17.7 | 18.8 | 18.2 |
50 | 0.1 | 0.6 | 20.1 | 18.2 | 19.2 |
50 | 0.1 | 0.7 | 18.0 | 18.7 | 18.4 |
50 | 0.1 | 0.8 | 17.5 | 18.6 | 18.1 |
50 | 0.1 | 0.9 | 17.4 | 18.6 | 18.0 |
50 | 0.1 | 1.0 | 18.7 | 17.1 | 17.9 |
Scale | Shape | Compactness | OS (%) | US (%) | ED (%) |
---|---|---|---|---|---|
50 | 0 | 0.8 | 20.8 | 19.5 | 20.1 |
50 | 0.1 | 0.8 | 17.5 | 18.6 | 18.1 |
50 | 0.2 | 0.8 | 18.3 | 16.6 | 17.4 |
50 | 0.3 | 0.8 | 17.9 | 16.9 | 17.4 |
50 | 0.4 | 0.8 | 17.8 | 17.5 | 17.7 |
50 | 0.5 | 0.8 | 18.9 | 17.8 | 18.3 |
50 | 0.6 | 0.8 | 20.4 | 18.9 | 19.5 |
50 | 0.7 | 0.8 | 20.9 | 22.2 | 21.5 |
50 | 0.8 | 0.8 | 26.7 | 23.5 | 25.2 |
50 | 0.9 | 0.8 | 40.9 | 28.7 | 35.4 |
Scale | Shape | Compactness | OS (%) | US (%) | ED (%) |
---|---|---|---|---|---|
50 | 0.1 | 0.8 | 17.5 | 18.6 | 18.1 |
50 | 0.1 | 0.9 | 17.4 | 18.6 | 18.0 |
50 | 0.1 | 1.0 | 18.7 | 17.1 | 17.9 |
50 | 0.2 | 0.8 | 18.3 | 16.6 | 17.4 |
50 | 0.2 | 0.9 | 17.6 | 17.1 | 17.4 |
50 | 0.2 | 1.0 | 17.4 | 17.7 | 17.6 |
50 | 0.3 | 0.8 | 17.6 | 16.7 | 17.2 |
50 | 0.3 | 0.9 | 18.1 | 16.6 | 17.3 |
50 | 0.3 | 1.0 | 17.8 | 17.7 | 17.7 |
50 | 0.4 | 0.8 | 17.8 | 17.5 | 17.7 |
50 | 0.4 | 0.9 | 17.4 | 17.5 | 17.5 |
50 | 0.4 | 1.0 | 18.7 | 17.9 | 18.3 |
Model | Data | Precision (%) | Recall (%) | F-score (%) |
---|---|---|---|---|
TPOT | Training data | 93.4 | 94.6 | 94.0 |
Training subset | 99.8 | 99.8 | 1.0 | |
Test subset | 73.3 | 77.4 | 75.3 | |
LightGBM | Training data | 91.2 | 96.1 | 93.6 |
Training subset | 98.6 | 1.0 | 99.3 | |
Test subset | 70.1 | 83.1 | 76.0 | |
Stacking-gully | Training data | 68.1 | 79.7 | 73.4 |
Training subset | 68.3 | 76.7 | 72.2 | |
Test subset | 67.7 | 89.5 | 77.1 |
Process | Layer | Area(m2) | Evaluation Index | Ratio (%) |
---|---|---|---|---|
Initial extraction | Reference data | 47,938.7 | Precision | 40.7 |
Gully area extracted | 98,641.1 | Recall | 83.7 | |
Correctly extracted area | 40,127.0 | F-score | 54.8 | |
False negatives | 7811.8 | Error of omission | 16.3 | |
Truly false positives | 35,428.4 | True error of commission | 35.9 | |
Limited false positives | 23,085.7 | Limited error of commission | 23.4 | |
Revised extraction | Reference data | 47,938.7 | Precision | 61.6 |
Gully area extracted | 58,787.9 | Recall | 75.6 | |
Correctly extracted area | 36,234.8 | F-score | 67.8 | |
False negatives | 11,703.9 | Error of omission | 24.4 | |
Truly false positives | 12,389.6 | True error of commission | 21.1 | |
Limited false positives | 10,163.4 | Limited error of commission | 17.3 |
Subset | Gullied Area Digitized (m2) | Gullied Area Extracted (m2) | Precision (%) | Recall (%) | Error of Omission (%) | True Error of Commission (%) | Limited Error of Commission (%) |
---|---|---|---|---|---|---|---|
v_1 | 97,832.3 | 98,016.4 | 60.2 | 60.3 | 39.7 | 23.2 | 16.6 |
v_2 | 68,479.2 | 72,372.6 | 76.3 | 82.0 | 18.0 | 5.6 | 18.1 |
v_3 | 111,655.2 | 137,558.1 | 55.9 | 68.8 | 31.2 | 23.3 | 20.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhang, Z.; Wang, X.; Zhao, X.; Yi, L.; Hu, S. Object-Based Mapping of Gullies Using Optical Images: A Case Study in the Black Soil Region, Northeast of China. Remote Sens. 2020, 12, 487. https://doi.org/10.3390/rs12030487
Wang B, Zhang Z, Wang X, Zhao X, Yi L, Hu S. Object-Based Mapping of Gullies Using Optical Images: A Case Study in the Black Soil Region, Northeast of China. Remote Sensing. 2020; 12(3):487. https://doi.org/10.3390/rs12030487
Chicago/Turabian StyleWang, Biwei, Zengxiang Zhang, Xiao Wang, Xiaoli Zhao, Ling Yi, and Shunguang Hu. 2020. "Object-Based Mapping of Gullies Using Optical Images: A Case Study in the Black Soil Region, Northeast of China" Remote Sensing 12, no. 3: 487. https://doi.org/10.3390/rs12030487
APA StyleWang, B., Zhang, Z., Wang, X., Zhao, X., Yi, L., & Hu, S. (2020). Object-Based Mapping of Gullies Using Optical Images: A Case Study in the Black Soil Region, Northeast of China. Remote Sensing, 12(3), 487. https://doi.org/10.3390/rs12030487