A Novel Approach for Predicting the Height of the Water-Flow Fracture Zone in Undersea Safety Mining
Abstract
:1. Introduction
2. Methodology
2.1. Study Areas
2.2. Data Collection
2.3. Rotating Forest Algorithm
- (1)
- The original feature set can be randomly segmented, and each subset contains a number of characteristic indexes. Among these subsets, any two subsets cannot intersect. If the original feature set is indivisible, then the remainder forms a subset. In the end, a number of subsets can be obtained. The j-th feature subset of the i-th base classifier () can then be expressed.
- (2)
- All samples are extracted from the dataset X, and 75% of the samples are randomly extracted with the bootstrap method to generate the sample subset . The subset can be transformed into according to the feature transformation algorithm. The transformed matrix can be arranged to generate a sparse matrix , which is defined as follows:
- (3)
- The matrix can be adjusted to obtain the new matrix , and each column is consistent with the original feature set sequence.
- (4)
- Using as the training set, the decision tree algorithm can be used to train the i-th base classifier, which is named . Steps (1)–(3) are repeated until the L base classifiers of are trained and generated. During the generation of the base classifier, the rotation transformation matrix and its corresponding base classifier can be recorded to direct the subsequent synthesis of the base classifier.
- (5)
- Rotate the new sample x, which can obtain .
- (6)
- Use the base classifier to predict .
- (7)
- Repeat steps (5) and (6), and the classification results of all base classifiers can be obtained. Then, the results can be integrated as per the following equation:
- (8)
- Place sample x into the category with the highest probability; then, the final integrated classification result can be obtained.
2.4. Feature Transformation Algorithm
2.5. Model Evaluation Metrics
2.6. Controlling Factors of WFZ
2.7. Shortcomings and Uncertainty
3. Results and Discussion
3.1. Validity Verification of RoF Model: Comparison and Evaluation
3.2. Engineering Application
3.2.1. Project Profile
3.2.2. Prediction the Height of the Water-Flow Fracture Zone
3.2.3. Field Observation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, D.; Wu, Q. An approach to predict the height of fractured water-conducting zone of coal roof strata using random forest regression. Sci. Rep. 2018, 8, 10986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Li, X.; Yao, J.; Gong, F.; Li, X.; Du, K.; Tao, M.; Huang, L.; Du, S. Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock. Int. J. Rock Mech. Min. Sci. 2019, 122, 104063. [Google Scholar] [CrossRef]
- Peng, K.; Liu, Z.; Zou, Q.; Wu, Q.; Zhou, J. Mechanical property of granite from different buried depths under uniaxial compression and dynamic impact: An energy-based investigation. Powder Technol. 2020, 362, 729–744. [Google Scholar] [CrossRef]
- Peng, K.; Lv, H.; Yan, F.; Zou, Q.; Song, X.; Liu, Z. Effects of temperature on mechanical properties of granite under different fracture modes. Eng. Fract. Mech. 2020, 226, 106838. [Google Scholar]
- Liang, W.; Zhao, G.; Wang, X.; Zhao, J.; Ma, C. Assessing the rockburst risk for deep shafts via distance-based multi-criteria decision making approaches with hesitant fuzzy information. Eng. Geol. 2019, 260, 105211. [Google Scholar] [CrossRef]
- Liu, Z.X.; Dang, W.G.; He, X.Q.; Li, D.Y. Cancelling ore pillars in large-scale coastal gold deposit: A case study in Sanshandao gold mine, China. Trans. Nonferr. Met. Soc. China 2013, 23, 3046–3054. [Google Scholar] [CrossRef]
- The Government Website of the Accident Inquiry System from the State Administration of Work Safety. Available online: http://media.chinasafety.gov.cn:8090/iSystem/shigumain.jsp (accessed on 23 December 2018).
- Peng, K.; Li, X.B.; Wan, C.C.; Peng, S.Q.; Zhao, G.Y. Safe mining technology of undersea metal mine. Trans. Nonferr. Met. Soc. China 2012, 22, 740–746. [Google Scholar] [CrossRef]
- Majdi, A.; Hassani, F.P.; Nasiri, M.Y. Prediction of the height of destressed zone above the mined panel roof in longwall coal mining. Int. J. Coal Geol. 2012, 98, 62–72. [Google Scholar] [CrossRef]
- Wang, F.; Xu, J.; Chen, S.; Ren, M. Method to Predict the Height of the Water Conducting Fractured Zone Based on Bearing Structures in the Overlying Strata. Mine Water Environ. 2019, 38, 767–779. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Wang, D. Mining-induced void distribution and application in the hydro-thermal investigation and control of an underground coal fire: A case study. Process. Saf. Environ. Prot. 2016, 102, 734–756. [Google Scholar] [CrossRef]
- Fan, G.W.; Zhang, D.S.; Ma, L.Q. Overburden movement and fracture distribution induced by longwall mining of the shallow coal seam in the Shendong coalfield. J. China Univ. Min. Technol. 2011, 40, 196–201. [Google Scholar]
- Cheng, W.; Zhang, N.; Han, Y.; Xiong, Z.; Qian, D. Experiment research on overburden mining-induced fracture evolution and its fractal characteristics in ascending mining. Arab. J. Geosci. 2015, 8, 13–21. [Google Scholar]
- Zhou, N.; Zhang, J.X.; Yan, H.; Li, M. Deformation Behavior of Hard Roofs in Solid Backfill Coal Mining Using Physical Models. Energies 2017, 10, 557. [Google Scholar] [CrossRef] [Green Version]
- Gang, W.; Wu, M.; Rui, W.; Hao, X.; Xiang, S. Height of the mining-induced fractured zone above a coal face. Eng. Geol. 2017, 216, 140–152. [Google Scholar]
- Poulsen, B.A.; Adhikary, D.; Hua, G. Simulating mining-induced strata permeability changes. Eng. Geol. 2018, 237, 208–216. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, G.; Wang, S.; Wu, H.; Wang, S. A case study on the height of a water-flow fracture zone above undersea mining: Sanshandao Gold Mine, China. Environ. Earth Sci. 2019, 78, 122. [Google Scholar] [CrossRef]
- Jiaqi, G.; Qian, Y.; Chen, J.; Chen, F. The Minimum Safe Thickness and Catastrophe Process for Water Inrush of a Karst Tunnel Face with Multi Fractures. Processes 2019, 7, 686. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.J.; Jing, S.L.; Jiang, Y.J.; Tian, L.; Wen, J.H.; Cao, Z.G.; Shi, S.S.; Zuo, Y.J. Study of the Fracture Law of Overlying Strata under Water Based on the Flow-Stress-Damage Model. Geofluids 2019, 2019, 3161852. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, W.J.; Wang, G.; Jia, Z.Z. Numerical simulation on tendency mining fracture evolution characteristics of overlying strata and coal seams above working face with large inclination angle and mining depth. Arab. J. Geosci. 2017, 10, 82. [Google Scholar] [CrossRef]
- Sun, Y.; Zhimin, X.U.; Dong, Q. Monitoring and simulation research on development of water flowing fractures for coal mining under Xiaolangdi reservoir. Chin. J. Rock Mech. Eng. 2009, 28, 238–245. [Google Scholar]
- Chen, L.; Fan, S.W.; Zhao, C.; Zhang, L.; Cheng, Z.H. Calculation Method of Overburden Damage Height Based on Fracture Mechanics Analysis of Soft and Hard Rock Layers. Geofluids 2019, 2019, 3790264. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Bi, B.; Yang, P.T.; Wu, Y.L.; Shen, S.S. The application of the high density resistivity method to the survey of the mined-out area. Geophys. Geochem. Explor. 2009, 3. [Google Scholar]
- Hettama, M.; Horsrud, P.; Taugbol, K.; Friedheim, J.; Huynh, H.; Sanders, M.W.; Young, S. Development Of An Innovative High-Pressure Testing Device For The Evaluation Of Drilling Fluid Systems And Drilling Fluid Additives Within Fractured Permeable Zones. In Proceedings of the Offshore Mediterranean Conference and Exhibition, Ravenna, Italy, 28–30 March 2007. [Google Scholar]
- Jiang, Z.; Yue, J.; Liu, Z. Application of Mine Transient Electromagnetic Method in Forecasting Goaf Water. Chin. J. Eng. Geophys. 2007, 4, 291–294. [Google Scholar]
- Guo, W.; Zhao, G.; Lou, G.; Wang, S. A New Method of Predicting the Height of the Fractured Water-Conducting Zone Due to High-Intensity Longwall Coal Mining in China. Rock Mech. Rock Eng. 2019, 52, 2789–2802. [Google Scholar] [CrossRef]
- Rezaei, M.; Hossaini, M.F.; Majdi, A.; Najmoddini, I. Determination of the height of destressed zone above the mined panel: An ANN model. Int. J. Min. Geo-Eng. 2017, 51, 1–7. [Google Scholar]
- Yuan, Z.G.; Wang, H.T.; Hu, G.Z.; Liu, N.P.; Fan, X.G. Forecast model of GA-SVM for shaft-lining non-mining fracture. J. China Coal Soc. 2011, 36, 393–397. [Google Scholar]
- Bo, L.; Chen, Y.J.G. Risk Assessment of Coal Floor Water Inrush from Underlying Aquifers Based on GRA–AHP and Its Application. Eng. Geol. 2016, 34, 143–154. [Google Scholar]
- Liang, W.; Zhao, G.; Wu, H.; Chen, Y. Assessing the risk degree of goafs by employing hybrid TODIM method under uncertainty. Bull. Eng. Geol. Environ. 2019, 78, 3767–3782. [Google Scholar] [CrossRef]
- Liang, W.; Zhao, G.; Wu, H.; Dai, B. Risk assessment of rockburst via an extended MABAC method under fuzzy environment. Tunn. Undergr. Space Technol. 2019, 83, 533–544. [Google Scholar] [CrossRef]
- Dong, L.J.; Li, X.B. Prediction of rockburst classification using Random Forest. Trans. Nonferr. Met. Soc. China 2013, 23, 472–477. [Google Scholar] [CrossRef]
- Rodriguez, J.J.; Kuncheva, L.I.; Alonso, C.J. Rotation Forest: A New Classifier Ensemble Method. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1619–1630. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.H.; Huang, D.S. Cancer classification using Rotation Forest ☆. Comput. Biol. Med. 2008, 38, 601–610. [Google Scholar] [CrossRef]
- Guo, H.; Diao, X.; Liu, H. Improving undersampling-based ensemble with rotation forest for imbalanced problem. Turk. J. Electr. Eng. Comput. Sci. 2019, 27, 1371–1386. [Google Scholar] [CrossRef]
- Chen, W.; Shirzadi, A.; Shahabi, H.; Ahmad, B.B.; Zhang, S.; Hong, H.; Zhang, N. A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomat. Nat. Hazards Risk 2017, 8, 1955–1977. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.B.; Sims, R.E.H. Eucalypt litter decomposition and nutrient release under a short rotation forest regime and effluent irrigation treatments in New Zealand: I. External effects. Soil Biol. Biochem. 2002, 34, 913–922. [Google Scholar] [CrossRef]
- Sun, Y.P.; Wang, Y.F.; Zheng, X. Analysis the height of water conducted zone of coal seam roof based on GA-SVR. J. China Coal Soc. 2009, 34, 1610–1615. [Google Scholar]
- Wu, Q.; Shen, J.; Liu, W.; Wang, Y. A RBFNN-based method for the prediction of the developed height of a water-conductive fractured zone for fully mechanized mining with sublevel caving. Arab. J. Geosci. 2017, 10, 172. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Li, L.; Zhai, C.Z. Forecast of the height of water flowing fractured zone based on BP neural networks. J. Min. Saf. Eng. 2015, 32, 905–910. [Google Scholar]
- Miao, X.X.; Cui, X.M.; Wang, J.A.; Xu, J.L. The height of fractured water-conducting zone in undermined rock strata. Eng. Geol. 2011, 120, 32–39. [Google Scholar] [CrossRef]
- Xie, X.; Xibing, L.I.; Shang, X.; Weng, L.; Deng, Q. Prediction of height of water flowing fractured zone based on PCA-BP neural networks model. China Saf. Sci. J. 2017, 27, 100–105. [Google Scholar]
- Wang, S.; Huang, L.; Li, X. Analysis of rockburst triggered by hard rock fragmentation using a conical pick under high uniaxial stress. Tunn. Undergr. Space Technol. 2020, 96, 103195. [Google Scholar] [CrossRef]
- Gadhok, N.; Kinsner, W. Rotation sensitivity of independent component analysis to outliers. In Proceedings of the Canadian Conference on Electrical & Computer Engineering, Saskatoon, SK, Canada, 1–4 May 2005. [Google Scholar]
- Chen, Y.; Zhao, G.; Wang, S.; Li, X. Investigations of the height of fractured zones in overburden induced by undersea mining. Arab. J. Geosci. 2019, 12, 618. [Google Scholar] [CrossRef]
- Chai, H.B.; Zhang, J.P.; Chao, Y. Prediction of water-flowing height in fractured zone of overburden strata based on GA-SVR. J. Min. Saf. Eng. 2018, 35, 359–365. [Google Scholar]
- Hu, X.J.; Li, W.P.; Cao, D.T.; Liu, M.C. Index of multiple factors and expected height of fully mechanized water flowing fractured zone. J. China Coal Soc. 2012, 37, 613–620. [Google Scholar]
No. | Mining Depth (m) | Mining Height (m) | Lithology Type | Working-Face Length (m) | Dip Angle (°) | Height of the WFZ (m) |
---|---|---|---|---|---|---|
1 | 417 | 2.9 | 4 | 80 | 4 | 68 |
2 | 350 | 8.5 | 3 | 169 | 6.5 | 55.255 |
3 | 330 | 4.1 | 1 | 150 | 7 | 39 |
4 | 150.4 | 2 | 4 | 174 | 23 | 58.4 |
5 | 540 | 12.4 | 2 | 100 | 21 | 134 |
6 | 49 | 4 | 1 | 135 | 5 | 45 |
7 | 460 | 11.4 | 3 | 207 | 8 | 194.6 |
8 | 510 | 7.5 | 3 | 195 | 6 | 185 |
9 | 43 | 3 | 4 | 30 | 60 | 35 |
10 | 600 | 8.78 | 3 | 223.35 | 6 | 54.08 |
11 | 321 | 9 | 2 | 120 | 5 | 111 |
12 | 420 | 3.4 | 3 | 70 | 23 | 56.8 |
13 | 173 | 1.9 | 4 | 70 | 20 | 25.3 |
14 | 173 | 2 | 3 | 70 | 20 | 26.7 |
15 | 84 | 4 | 2 | 108 | 3 | 30 |
16 | 300 | 4 | 2 | 75 | 2 | 120 |
17 | 590 | 2.99 | 2 | 220 | 6 | 47.6 |
18 | 620 | 3.1 | 4 | 240 | 3.5 | 20.215 |
19 | 458 | 6 | 3 | 190 | 6 | 114.2 |
20 | 404.5 | 2.3 | 3 | 95 | 18 | 19.5 |
21 | 313.5 | 2.4 | 3 | 65 | 6 | 21.9 |
22 | 480 | 6.3 | 3 | 170 | 4 | 46.13 |
23 | 480 | 5.2 | 1 | 150 | 9 | 42.3 |
24 | 200 | 8 | 4 | 89 | 76 | 48 |
25 | 220 | 5.3 | 3 | 120 | 25 | 46.5 |
26 | 89 | 2.03 | 4 | 69 | 7 | 45.86 |
27 | 200 | 1.5 | 1 | 45 | 0 | 4.5 |
28 | 284 | 7 | 2 | 130 | 3.5 | 26 |
29 | 276 | 4.5 | 1 | 350 | 7 | 17.2 |
30 | 350 | 2.5 | 2 | 135 | 5 | 20 |
31 | 282 | 4 | 3 | 71 | 8 | 33 |
32 | 240 | 3.5 | 1 | 195 | 7 | 21.675 |
33 | 240 | 3.5 | 1 | 195 | 7 | 17.445 |
34 | 368.05 | 5.77 | 3 | 125 | 6 | 48.35 |
35 | 541.5 | 5.28 | 3 | 175 | 6.5 | 49.25 |
36 | 340 | 1.8 | 2 | 178 | 3 | 19.69 |
37 | 319 | 2 | 2 | 148 | 5 | 17.155 |
38 | 311 | 2 | 2 | 85 | 3 | 19.11 |
39 | 327.5 | 2 | 2 | 78 | 7 | 22.995 |
40 | 355.5 | 2 | 2 | 125 | 3 | 23.865 |
41 | 349 | 2 | 3 | 130 | 5.5 | 22.31 |
42 | 363 | 2 | 3 | 180 | 8 | 16.845 |
43 | 447 | 2 | 3 | 107 | 4 | 30.965 |
44 | 420.5 | 2.8 | 3 | 135 | 3 | 41.13 |
45 | 509.5 | 3 | 2 | 140 | 10 | 26.01 |
46 | 383 | 2.2 | 2 | 125 | 5 | 13.035 |
47 | 376.5 | 2 | 2 | 124 | 5 | 12.675 |
48 | 391 | 1.8 | 2 | 125 | 5 | 14.29 |
49 | 404 | 2.2 | 2 | 150 | 6 | 21.195 |
50 | 415 | 3.4 | 3 | 120 | 8 | 30.085 |
51 | 418 | 1.8 | 3 | 120 | 6 | 24.69 |
52 | 550 | 5.8 | 1 | 180 | 8 | 65.2 |
53 | 552.5 | 5.8 | 3 | 182 | 8 | 44.36 |
54 | 490.5 | 6 | 3 | 182 | 7 | 44.19 |
55 | 360 | 7.69 | 3 | 220 | 3 | 45.125 |
56 | 117 | 3.4 | 2 | 205 | 2 | 72 |
57 | 520 | 2.3 | 3 | 174 | 12 | 50.675 |
58 | 509 | 2.25 | 3 | 180 | 12.5 | 34.925 |
59 | 402.5 | 3 | 3 | 170 | 12 | 19.6 |
60 | 550 | 2.4 | 4 | 180 | 15 | 55.32 |
61 | 56 | 4.3 | 4 | 55 | 0 | 42.5 |
62 | 395.5 | 3.45 | 3 | 160 | 14 | 26.7 |
63 | 446 | 3.8 | 4 | 143 | 17 | 40 |
64 | 100 | 3.4 | 3 | 80 | 6 | 44.4 |
65 | 230 | 2 | 1 | 85 | 37 | 52.5 |
66 | 384.2 | 2.65 | 3 | 190.5 | 21 | 33 |
67 | 306 | 3 | 3 | 150 | 28 | 33.615 |
68 | 460 | 12.4 | 3 | 227 | 12 | 30 |
69 | 125 | 3 | 1 | 150 | 5 | 22 |
70 | 474.16 | 5.8 | 3 | 230 | 4 | 65.395 |
71 | 316 | 5.9 | 3 | 248 | 4.5 | 114.7 |
72 | 316 | 5.2 | 3 | 248 | 4.5 | 102.3 |
73 | 386.5 | 3.1 | 3 | 150 | 10 | 40.79 |
74 | 380 | 3.5 | 3 | 180 | 6 | 45.84 |
75 | 101.1 | 2.2 | 3 | 158 | 1 | 63 |
76 | 290 | 6 | 1 | 645 | 8 | 85.6 |
77 | 325 | 8 | 2 | 134 | 8 | 83.9 |
78 | 255 | 4.2 | 2 | 72 | 18 | 51.3 |
79 | 450 | 8 | 4 | 170 | 8 | 86.8 |
80 | 412 | 6.9 | 3 | 160 | 4 | 38.8 |
81 | 332.85 | 7.15 | 3 | 160 | 5 | 16.115 |
82 | 319.2 | 8.2 | 3 | 160 | 7.5 | 27.84 |
83 | 278.15 | 8.7 | 3 | 170 | 8 | 28.56 |
84 | 282 | 8.55 | 3 | 140 | 5 | 25.255 |
85 | 258.55 | 8.45 | 3 | 175 | 3 | 20.85 |
86 | 286.45 | 7.8 | 3 | 150 | 8 | 35.9 |
87 | 395 | 2.5 | 3 | 178 | 9 | 26.33 |
88 | 478.5 | 2.5 | 3 | 180 | 8 | 33.755 |
89 | 445 | 4 | 3 | 198 | 8 | 29.265 |
90 | 490.5 | 5 | 3 | 172 | 8 | 52.76 |
91 | 490 | 6 | 1 | 182 | 8 | 67.8 |
92 | 640 | 8.5 | 3 | 232 | 6.5 | 193.4 |
93 | 580 | 10.7 | 3 | 150 | 7.5 | 227.7 |
94 | 347 | 9.9 | 3 | 100 | 2 | 79.255 |
95 | 320 | 1.7 | 4 | 65 | 6 | 27.5 |
96 | 187.5 | 1.2 | 3 | 300 | 10 | 10.41 |
97 | 450 | 5.5 | 2 | 300 | 5 | 61 |
98 | 342.5 | 3.8 | 3 | 114 | 13 | 28.455 |
99 | 338.5 | 1.9 | 3 | 115.5 | 20 | 20.995 |
100 | 316 | 1.9 | 3 | 165 | 12 | 26.085 |
101 | 296 | 1.9 | 4 | 95.5 | 15 | 17.84 |
102 | 493.75 | 13.43 | 3 | 130 | 15 | 93.175 |
103 | 120 | 1.2 | 2 | 75 | 8 | 31 |
104 | 605.5 | 3 | 3 | 136 | 2 | 38.185 |
105 | 516 | 3.9 | 3 | 205 | 2 | 31.765 |
106 | 520.5 | 3 | 3 | 202 | 2 | 33.365 |
107 | 960 | 6 | 2 | 190 | 5 | 65.4 |
Methods | RMSE (m) | R2 |
---|---|---|
Random forest | 37.75 | 0.972 |
SVM | 41.30 | 0.902 |
Rotation forest | 39.81 | 0.968 |
Methods | Mining Depth (m) | Mining Height (m) | Lithology Type | Working-Face Length (m) | Dip Angle (°) | Predicted Result (m) |
---|---|---|---|---|---|---|
Rotation Forest | −165 | 35 | 2 | 49 | 46 | 38.65 |
−200 | 40 | 2 | 56 | 46 | 33.35 | |
−240 | 40 | 2 | 56 | 46 | 36.56 | |
Random Forest | −165 | 35 | 2 | 49 | 46 | 36.65 |
−200 | 40 | 2 | 56 | 46 | 28.33 | |
−240 | 40 | 2 | 56 | 46 | 32.24 | |
SVM | −165 | 35 | 2 | 49 | 46 | 35.15 |
−200 | 40 | 2 | 56 | 46 | 24.15 | |
−240 | 40 | 2 | 56 | 46 | 29.64 |
Methods | Depth (m) | Field Observation (m) | Predicted Result (m) | Absolute Error (m) | Relative Error (%) |
---|---|---|---|---|---|
Rotation Forest | −165 | 40.5 | 38.65 | 0.35 | 0.90 |
−200 | 32.1 | 33.35 | 1.35 | 4.21 | |
−240 | 35.3 | 36.56 | 1.26 | 3.50 | |
Random Forest | −165 | 40.5 | 36.65 | 2.35 | 6.03 |
−200 | 32.1 | 28.33 | 3.67 | 11.47 | |
−240 | 35.3 | 32.24 | 3.06 | 8.67 | |
SVM | −165 | 40.5 | 35.15 | 3.85 | 9.87 |
−200 | 32.1 | 24.15 | 7.85 | 24.5 | |
−240 | 35.3 | 29.64 | 5.66 | 16.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, B.; Chen, Y. A Novel Approach for Predicting the Height of the Water-Flow Fracture Zone in Undersea Safety Mining. Remote Sens. 2020, 12, 358. https://doi.org/10.3390/rs12030358
Dai B, Chen Y. A Novel Approach for Predicting the Height of the Water-Flow Fracture Zone in Undersea Safety Mining. Remote Sensing. 2020; 12(3):358. https://doi.org/10.3390/rs12030358
Chicago/Turabian StyleDai, Bing, and Ying Chen. 2020. "A Novel Approach for Predicting the Height of the Water-Flow Fracture Zone in Undersea Safety Mining" Remote Sensing 12, no. 3: 358. https://doi.org/10.3390/rs12030358
APA StyleDai, B., & Chen, Y. (2020). A Novel Approach for Predicting the Height of the Water-Flow Fracture Zone in Undersea Safety Mining. Remote Sensing, 12(3), 358. https://doi.org/10.3390/rs12030358