A Fully Automatic Algorithm for Editing the TanDEM-X Global DEM
Abstract
:1. Introduction
2. Method
2.1. The TanDEM-X WBL
2.2. Identification and Classification of Editing Areas
- Solid Big: extended void area caused by missing acquisitions,
- Water: water identified through the reference WBL and small gaps with high probability of being part of the detected adjacent water body,
- Water side: gap neighboring a water body,
- Disperse: small gap located in the vicinity of other gaps of the same kind,
- Small: small isolated gaps,
- Tiny: isolated tiny gaps (maximum 4 pixels).
2.3. Gap Filling
- If an external reference DEM is available for the considered region, all different types of gaps are filled by ingesting the reference into the missing areas. In this case, we implemented a stable method based on the delta surface fill interpolation [19]. The principle is that the considered area is composed by the bounding box of the gap to be filled, plus an adequate margin to anchor the reference to the input DEM (see Figure 6(1a)). In the following two subsections, we detail which kind of external reference DEMs are used together with their prioritization (Section 2.3.1), and we provide a more extended description of what we call the stable delta surface fill method (Section 2.3.2).
2.3.1. External Reference DEM Data
2.3.2. Stable Delta Surface Interpolation
- Define the editing area, which includes the gap and its bounding box plus a margin of pixels.
- Select the best available DEM reference.
- Resample the fill surface to match the output DEM posting.
- Derive the unreliable mask.
- Compute non-rigid shifts on the reference, in order to compensate for residual misalignments.
- Create the delta surface.
- Populate the center of large voids in the delta surface with a mean value.
- Interpolate across the voids in the delta surface.
- Smooth the delta surface with a low pass
- Combine the interpolated delta with the filling source within the original voids.
2.3.3. Delta Reference Quality Check
- tie-points,
- unreliable pixels before editing,
- unreliable pixels after editing,
- filled voids.
2.4. Water Flattening
2.4.1. Ocean Flattening
2.4.2. Lake Flattening
2.4.3. River Flattening
2.4.4. Cross-Geocell Harmonization
2.5. Editing Mask
3. Results and Performance
3.1. Results
3.2. Large-Scale Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hawker, L.; Rougier, J.; Neal, J.; Bates, P.; Archer, L.; Yamazaki, D. Implications of Simulating Global Digital Elevation Models for Flood Inundation Studies. Water Resour. Res. 2018. [Google Scholar] [CrossRef] [Green Version]
- Archer, L.; Neal, J.; Bates, P.; House, J. Comparing TanDEM-X Data with Frequently-Used DEMs for Flood Inundation Modelling. Water Resour. Res. 2018. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Abrams, M.; Crippen, R.; Fujisada, H. ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD). Remote Sens. 2020, 12, 1156. [Google Scholar] [CrossRef] [Green Version]
- Takaku, J.; Tadono, T. PRISM On-Orbit Geometric Calibration and DSM Performance. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4060–4073. [Google Scholar] [CrossRef]
- Crippen, R.; Buckley, S.; Agram, P.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; et al. Nasadem global elevation model: Methods and progress. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B4, 125–128. [Google Scholar] [CrossRef]
- Simard, M.; Neumann, M.; Buckley, S. Validation of the new SRTM digital elevation model (NASADEM) with ICESAT/GLAS over the United States. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3227–3229. [Google Scholar] [CrossRef]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Bräutigam, B.; Borla Tridon, D.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and Performance Assessment of the Global TanDEM-X Digital Elevation Model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, C.; Rizzoli, P. Landcover-dependent assessment of the relative height accuracy in TanDEM-X DEM products. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1892–1896. [Google Scholar] [CrossRef]
- WorldDEMTM. 2019. Available online: https://worlddem-database.terrasar.com/ (accessed on 2 December 2020).
- Earth Observation Center. The TanDEM-X PolarDEM Project. 2020. Available online: https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-11882/20871_read-66374 (accessed on 2 December 2020).
- Wendleder, A.; Breunig, M.; Martin, K.; Wessel, B.; Roth, A. Water body detection from TanDEM-X data: Concept and first evaluation of an accurate water indication mask. In Proceedings of the IEEE Symposium on Geoscience and Remote Sensing (IGARSS), Vancouver, BC, Canada, 4–29 July 2011. [Google Scholar]
- Valdo, P.; Sica, F.; Rizzoli, P. Improvement of TanDEM-X Water Mask by Exploiting the Acquisition Geometry. In Proceedings of the EUSAR 2018—12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018. [Google Scholar]
- Jähne, B.; Scharr, H.; Körkel, S.; Jähne, B.; Haußecker, H.; Geißler, P. Principles of Filter Design. In Handbook of Computer Vision and Applications; Academic Press: Cambridge, MA, USA, 1999; Volume 2, pp. 125–151. [Google Scholar]
- Beucher, S.; Lantuejoul, C. Use of Watersheds in Contour Detection. In Proceedings of the International Workshop on Image Processing: Real-time Edge and Motion Detection/Estimation, Rennes, France, 17–21 September 1979. [Google Scholar]
- Wendleder, A.; Wessel, B.; Roth, A.; Breunig, M.; Martin, K.; Wagenbrenner, S. TanDEM-X Water Indication Mask: Generation and First Evaluation Results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Grohman, G.; Kroenung, G.; Strebeck, J. Filling SRTM Voids: The Delta Surface Fill Method. Photogramm. Eng. Remote Sens. 2006, 72, 213–216. [Google Scholar]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1–R54. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Q.; Hu, J. Generation of Complete SAR Geometric Distortion Maps Based on DEM and Neighbor Gradient Algorithm. Appl. Sci. 2018, 8, 2206. [Google Scholar] [CrossRef] [Green Version]
- Deilami, K.; Hashim, M. Very high resolution optical satellites for DEM generation: A review. Eur. J. Sci. Res. 2011, 49, 542–554. [Google Scholar]
- Wang, S.; Ren, Z.; Wu, C.; Lei, Q.; Gong, W.; Ou, Q.; Zhang, H.; Ren, G.; Li, C. DEM generation from Worldview-2 stereo imagery and vertical accuracy assessment for its application in active tectonics. Geomorphology 2019, 336, 107–118. [Google Scholar] [CrossRef]
- Digital LiDAR-Terrain Models of Austria. Available online: http://data.opendataportal.at/dataset/dtm-austria (accessed on 23 July 2019).
- Digital Elevation Model (DEM) of Australia Derived from LiDAR 5 Metre Grid. Available online: https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/89644 (accessed on 19 May 2020).
- NASA Jet Propulsion Laboratory. NASADEM: Creating a New NASA Digital Elevation Model and Associated Products. 2020. Available online: https://earthdata.nasa.gov/esds/competitive-programs/measures/nasadem (accessed on 18 February 2020).
- Japan Aerospace Exploration Agency (JAXA). ALOS Global Digital Surface Model “ALOS World 3D—30 m (AW3D30)”. Available online: https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm (accessed on 15 April 2019).
- Pennec, X.; Cachier, P.; Ayache, N. Understanding the “demon’s algorithm”: 3D non-rigid registration by gradient descent. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 1999; pp. 597–605. [Google Scholar] [CrossRef] [Green Version]
- Lowekamp, B.C.; Chen, D.T.; Ibáñez, L.; Blezek, D. The design of SimpleITK. Front. Neuroinform. 2013, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, P.; Martone, M.; Rott, H.; Moreira, A. Characterization of Snow Facies on the Greenland Ice Sheet Observed by TanDEM-X Interferometric SAR Data. Remote Sens. 2017, 9, 315. [Google Scholar] [CrossRef] [Green Version]
- Martone, M.; Rizzoli, P.; Krieger, G. Volume decorrelation effects in TanDEM-X interferometric SAR data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1812–1816. [Google Scholar] [CrossRef]
- Martone, M.; Rizzoli, P.; Wecklich, C.; Gonzalez, C.; Bueso-Bello, J.L.; Valdo, P.; Schulze, D.; Zink, M.; Krieger, G.; Moreira, A. The Global Forest/Non-Forest Map from TanDEM-X Interferometric SAR Data. Remote Sens. Environ. 2018, 205, 352–373. [Google Scholar] [CrossRef]
- Wessel, B. TanDEM-X Ground Segment—DEM Products Specification Document; Technical Report TD-GS-PS-0021; German Aerospace Center (DLR): Wessling, Germany, 2019. [Google Scholar]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth (1978–2012) 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Earth Gravitational Model. 2008. Available online: http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/SmallEndian/Undmin1x1egm2008isw=82WGS84TideFreeSE.gz (accessed on 15 November 2020).
- Bachmann, M.; Tridon, D.B.; Martone, M.; Sica, F.; Buckreuss, S.; Zink, M. How to Update a Global DEM—Acquisition Concepts for TanDEM-X and Tandem-L. In Proceedings of the EUSAR 2018—12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018. [Google Scholar]
- Lachaise, M.; Schweisshelm, B.; Fritz, T. The New Tandem-X Change Dem: Specifications And Interferometric Processing. In Proceedings of the 2020 IEEE Latin American GRSS ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 646–651. [Google Scholar]
Category | Bit | Meaning | Exemplary Value | Example Interpretation |
---|---|---|---|---|
Main | 0 | no edit / edit | 0000 0000 0000 0001 | void, LiDAR |
1 | land / water | 0000 0000 0000 0011 | water, lake | |
Water | 2 | ocean / lake / river | 0000 0000 0000 0111 | ocean |
3 | 0000 0000 0000 1111 | river | ||
4 | not used | 0000 0000 0000 1011 | ||
5 | water from void | 0000 0000 0010 1011 | river, water from void | |
Land | 6 | not enough valid pixel to adjust reference | 0000 0001 0100 0001 | void replaced with SRTM |
7 | void / height drift | 0000 0000 1000 0011 | height drift, LiDAR | |
8 | reference DEM | 0000 0001 0000 0011 | void SRTM | |
9 | 0000 0101 0100 0011 | height drift, ALOS wo | ||
10 | 0000 0111 0000 0011 | void interpolated | ||
11 | reference DEM non-rigid shift | 0000 1101 0000 0001 | void, NASADEM, shift | |
Overlap | 12 | geocell overlap pixel correction | 0001 0000 0000 0000 | overlap mean value |
Water Labels (Bits 2–3) | |
---|---|
no label | 00 |
ocean | 01 |
lake | 10 |
river | 11 |
Reference DEMs (Bits 7–9) | |
---|---|
LiDAR | 000 |
SRTM part of NASADEM | 001 |
ALOS non edited | 010 |
NASADEM wo ASTER | 011 |
ALOS wo ASTER | 100 |
NASADEM | 101 |
ALOS | 110 |
None (interpolation) | 111 |
Region | Total Edited | Filled Gaps | Filled Unreliable | Flattened Inland Water Bodies | |
---|---|---|---|---|---|
Australia | area km2 | 70,126.02 | 589 | 2016 | 67,521.02 |
N bodies | 305,469 | 1898 | - | 303,571 | |
New Zealand | area km2 | 9382.29 | 1129 | 4790 | 3463.29 |
N bodies | 18,538 | 1314 | - | 17,224 | |
Europe | area km2 | 252,821.73 | 7023 | 9360 | 236,438.73 |
N bodies | 1,948,075 | 5208 | - | 1,942,867 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, C.; Bachmann, M.; Bueso-Bello, J.-L.; Rizzoli, P.; Zink, M. A Fully Automatic Algorithm for Editing the TanDEM-X Global DEM. Remote Sens. 2020, 12, 3961. https://doi.org/10.3390/rs12233961
González C, Bachmann M, Bueso-Bello J-L, Rizzoli P, Zink M. A Fully Automatic Algorithm for Editing the TanDEM-X Global DEM. Remote Sensing. 2020; 12(23):3961. https://doi.org/10.3390/rs12233961
Chicago/Turabian StyleGonzález, Carolina, Markus Bachmann, José-Luis Bueso-Bello, Paola Rizzoli, and Manfred Zink. 2020. "A Fully Automatic Algorithm for Editing the TanDEM-X Global DEM" Remote Sensing 12, no. 23: 3961. https://doi.org/10.3390/rs12233961
APA StyleGonzález, C., Bachmann, M., Bueso-Bello, J. -L., Rizzoli, P., & Zink, M. (2020). A Fully Automatic Algorithm for Editing the TanDEM-X Global DEM. Remote Sensing, 12(23), 3961. https://doi.org/10.3390/rs12233961