Classification of Active Fires and Weather Conditions in the Lower Amur River Basin
Abstract
:1. Introduction
2. Methods and Data
2.1. Study Region and Vegetation
2.2. Hotspot (Fire) and Weather Data
3. Results
3.1. Top TwelveActive Fire-Periods
3.2. Classification of Fire-Periods
3.3. Recent Fire History
3.4. Weather Charts for Each Peak Hotspot Day
3.4.1. Low-Pressure Systems in April-Fire
3.4.2. Low-Pressure Systems in May- and July-Fire
3.4.3. Low-Pressure Systems in October-Fire
3.4.4. Wind Velocity and Direction
4. Discussion
4.1. Active Fire-Period
4.2. Warm Air Masses
4.3. High-Pressure Systems
4.4. Wind Conditions and Fire Activity
4.5. Fire Forecast
5. Conclusions
- Wildland fires in the SKK can be categorized into four major fire-periods in April, May, July, and October using their different fire rates of about 258, 104, 92, and 133 HS day−1, respectively.
- Common fire weather conditions were not found in the top 12 active fire-periods. However, we showed that most hotspot peak days occurred under the fast wind velocity (>30 km h−1) related to low-pressure systems. As wind speed gradually increases from a few days before the HS peak day, accurate weather forecast could issue a high wind warning. This advance warning will lead to the prevention of active fire occurrence under strong winds.
- For any future summer (July) fires like (1)29Jun’12, fire forecasts will be possible with the help of a temperature map to monitor the movement of a warm air mass, cTe. There are signs that warm air masses (cTe) move from the southwest. In addition, cTe will take a few days to reach the SKK.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dobricic, S.; Pozzoli, L. Arctic Permafrost Thawing; EUR 29940 EN; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Jobbagy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.J.; Bloom, A.A.; Schimel, D.; Sweeney, C.; Parazoo, N.C.; Medvigy, D.; Schaepman-Strub, G.; Zheng, C.; Schwalm, C.R.; Huntzinger, D.N.; et al. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO2 measurements. Sci. Adv. 2018, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; Van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. 2017, 9, 679–720. [Google Scholar] [CrossRef] [Green Version]
- Harden, J.W.; Manies, K.L.; Turetsky, M.R.; Neff, J.C. Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska. Glob Chang Biol. 2006, 12, 2391–2403. [Google Scholar] [CrossRef]
- Myers-Smith, H.; Harden, J.W.; Wilmking, M.; Fuller, C.C.; McGuire, A.D.; Chapin, F.S., III. Wetland succession in a permafrost collapse: interactions between fire and thermokarst. Biogeosciences 2008, 5, 1273–1286. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Kug, J.S.; Jeong, S.J.; Park, H.; Schaepman-Strub, G. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Sci. Adv. 2020, 6, 3308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randerson, J.T.; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. 2012, 117, G04012. [Google Scholar] [CrossRef]
- Warneke, C.; Bahreini, R.; Brioude, J.; Brock, C.A.; de Gouw, J.A.; Fahey, D.W.; Froyd, K.D.; Holloway, J.S.; Middlebrook, A.; Miller, L.; et al. Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Earth Syst. Sci. 2009, 36, L02813. [Google Scholar] [CrossRef] [Green Version]
- Hayasaka, H. Recent Vegetation Fire Incidence in Russia. Glob. Environ. Res. 2011, 15, 5–13. [Google Scholar]
- Cahoon, D.R.; Levine, J.S.; Cofer, W.R., III; Minnis, P.; Miller, J.E.; Tennille, G.M.; Yip, T.W.; Heck, P.W.; Stocks, B.J. The great Chinese fire of 1987: A view from space. In Proceedings of the Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, Williamsburg, VA, USA, 19–23 March 1991; pp. 61–66. [Google Scholar]
- Stocks, B.J.; Wotton, B.M.; Flannigan, M.D.; Fosberg, M.A.; Cahoon, D.R.; Goldammer, J.G. Boreal forest fire regimes and climate change. In Remote Sensing and Climate Modeling: Synergies and Limitations; Beniston, M., Verstraete, M.M., Eds.; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Huang, S.; Siegert, F.; Goldammer, J.G.; Sukhinin, A.I. Satellite-derived 2003 wildfires in southern Siberia and their potential influence on carbon sequestration. Int. J. Remote Sens. 2009, 30, 1479–1492. [Google Scholar] [CrossRef]
- Mollicone, D.; Eva, H.D.; Achard, F. Human role in Russian wild fires. Nature 2006, 440, 436–437. [Google Scholar] [CrossRef] [PubMed]
- Hayasaka, H.; Yamazaki, K.; Naito, D. Weather conditions and warm air masses in Southern Sakha during active forest fire periods. J. Disaster Res. 2019, 14, 641–648. [Google Scholar] [CrossRef]
- Hayasaka, H.; Yamazaki, K.; Naito, D. Weather conditions and warm air masses during active fire-periods in boreal forests. Polar Sci. 2019, 22, 1–8. [Google Scholar] [CrossRef]
- LandsatLook Viewer. Available online: https://landlook.usgs.gov/landlook/viewer.html (accessed on 27 August 2020).
- Torzhkov, I.O.; Kushnir, E.A.; Konstantinov, A.V.; Koroleva, T.S.; Efimov, S.V.; Shkolnik, I.M. Assessment of future climate change impacts on forestry in Russia. Russ. Meteorol. Hydrol. 2019, 44, 180–186. [Google Scholar] [CrossRef]
- Mokhov, I.I.; Semenov, V.A. Weather and Climate Anomalies in Russian Regions Related to Global Climate Change. Russ. Meteorol. Hydrol. 2016, 41, 84–92. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengov, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Changes in Climate Extremes and Their Impacts on The Natural Physical Environment; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 109–230. [Google Scholar]
- Sokolova, G.V.; Verkhoturov, A.L.; Korolev, S.P. Impact of deforestation on stream flow in the Amur River basin. Geosciences 2019, 6, 262. [Google Scholar] [CrossRef] [Green Version]
- Russia Vegetation Map. Available online: https://www.researchgate.net/publication/272680068_Russia%27s_Forests_Dominating_Forest_Types_and_Their_Canopy_Density (accessed on 27 August 2020).
- Simonov, E. One river, three countries (Amur Basin). In Conservation Investment Strategy for the Russian Far East; Sparling, E., Ed.; Pacific Environment: San Francisco, CA, USA, 2014. [Google Scholar]
- Olson, D.M.; Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 2002, 89, 199–224. [Google Scholar] [CrossRef]
- NASA Fire Information for Resource Management System, FIRMS; MODIS Collection 6. Available online: https://firms.modaps.eosdis.nasa.gov/download/ (accessed on 20 April 2019).
- Hayasaka, H.; Usup, A.; Naito, D. New approach evaluating peatland fires in Indonesian factors. Remote Sens. 2020, 12, 2055. [Google Scholar] [CrossRef]
- Worldview Satellite image (Corrected Reflectance (true color), MODIS on Terra). Available online: https://worldview.earthdata.nasa.gov/ (accessed on 29 August 2020).
- National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis 1: Pressure. Available online: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html (accessed on 20 April 2019).
- Weather Spark. Available online: https://weatherspark.com/y/143457/Average-Weather-in-Khabarovsk-Russia-Year-Round (accessed on 15 July 2020).
Rank | Name | Year | Days | Total HS | Ratio to Total HS for 17 Years1 % | Factor for σ2 |
---|---|---|---|---|---|---|
1 | (1)29Jun′12 | 2012 | 15 | 20,850 | 5.4 | 2.03 |
2 | (2)19Oct′05 | 2005 | 15 | 16,025 | 4.2 | 1.05 |
3 | (3)20Apr′08 | 2008 | 11 | 13,745 | 3.6 | 0.58 |
4 | (4)10Apr′03 | 2003 | 15 | 13,262 | 3.5 | 0.48 |
5 | (5)24Apr′18 | 2018 | 15 | 12,230 | 3.2 | 0.27 |
6 | (6)3May′03 | 2003 | 15 | 11,981 | 3.1 | 0.22 |
7 | (7)28Jul′03 | 2003 | 14 | 10,600 | 2.8 | −0.06 |
8 | (8)29Apr′09 | 2009 | 10 | 10,009 | 2.6 | −0.18 |
9 | (9)10May′16 | 2016 | 5 | 7,059 | 1.8 | −0.79 |
10 | (10)15Oct′04 | 2004 | 4 | 6,342 | 1.7 | −0.94 |
11 | (11)9Mar′08 | 2008 | 5 | 4,729 | 1.2 | −1.27 |
12 | (12)9Oct′05 | 2005 | 8 | 4,116 | 1.1 | −1.39 |
Total | 132 | 130,948 | 34.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayasaka, H.; Sokolova, G.V.; Ostroukhov, A.; Naito, D. Classification of Active Fires and Weather Conditions in the Lower Amur River Basin. Remote Sens. 2020, 12, 3204. https://doi.org/10.3390/rs12193204
Hayasaka H, Sokolova GV, Ostroukhov A, Naito D. Classification of Active Fires and Weather Conditions in the Lower Amur River Basin. Remote Sensing. 2020; 12(19):3204. https://doi.org/10.3390/rs12193204
Chicago/Turabian StyleHayasaka, Hiroshi, Galina V. Sokolova, Andrey Ostroukhov, and Daisuke Naito. 2020. "Classification of Active Fires and Weather Conditions in the Lower Amur River Basin" Remote Sensing 12, no. 19: 3204. https://doi.org/10.3390/rs12193204
APA StyleHayasaka, H., Sokolova, G. V., Ostroukhov, A., & Naito, D. (2020). Classification of Active Fires and Weather Conditions in the Lower Amur River Basin. Remote Sensing, 12(19), 3204. https://doi.org/10.3390/rs12193204