Seasonal Variability of Diffuse Attenuation Coefficient in the Pearl River Estuary from Long-Term Remote Sensing Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. In Situ Measurements
2.2.2. MODIS/Aqua Imagery
2.2.3. Ancillary Data
2.2.4. Models for Kd(490) Retrieval
2.2.5. S-EOF and Grey Relational Analyses
2.2.6. Performance Assessment
3. Results
3.1. Model Performance
3.2. Spatial Distribution and Temporal Variation
3.3. GRG of Water Constituents
3.4. S-EOF Analysis
4. Discussion
4.1. Evaluation of Kd(490) Models
4.2. Dominant Contributor to Kd(490) of Water Constituents
4.3. Influence of Physical Factors on Kd(490) Variability
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, M.; Son, S.H.; Harding, L.W., Jr. Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Yin, Y.; Wang, M.; Qin, B. A simple optical model to estimate diffuse attenuation coefficient of photosynthetically active radiation in an extremely turbid lake from surface reflectance. Opt. Express 2012, 20, 20482–20493. [Google Scholar] [CrossRef] [PubMed]
- Robert, P.B.; Alexander, S.; Kirill, Y.K. Optical Properties and Remote Sensing of Inland and Coastal Waters, 1st ed.; CRC Press: New York, NY, USA, 1995. [Google Scholar]
- Zhao, J.; Barnes, B.; Melo, N.; English, D.; Lapointe, B.; Muller-Karger, F.; Schaeffer, B.; Hu, C.M. Assessment of satellite-drived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters. Remote Sens. Environ. 2013, 131, 38–50. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, C.C.; Sathyendranath, S.; Platt, T. The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 2630–2642. [Google Scholar] [CrossRef]
- Saulquin, B.; Hamdi, A.; Gohin, F.; Populus, J.; Mangin, A.; D’Andon, O.F. Estimation of the diffuse attenuation coefficient KdPAR using MERIS and application to seabed habitat mapping. Remote Sens. Environ. 2013, 128, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Zhang, Y.; Liu, X.; Wang, M.; Qin, B. Remote sensing of diffuse attenuation coefficient of photosynthetically active radiation in Lake Taihu using MERIS data. Remote Sens. Environ. 2014, 140, 365–377. [Google Scholar] [CrossRef]
- Jerlov, N.G. Optical Oceanography; Elsevier: New York, NY, USA, 1976. [Google Scholar]
- Clavano, W.; Boss, E.; Karp-Boss, L. Inherent optical properties of non-spherical marine-like particles-From theory to observation. Oceanogr. Mar. Biol. 2007, 45, 1–38. [Google Scholar] [CrossRef]
- McClain, C.R.; Feldman, G.C.; Hooker, S.B. An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 5–42. [Google Scholar] [CrossRef]
- Mueller, J.L. SeaWiFS Algorithm for the Diffuse Attenuation Coefficient K(490) Using Water-Leaving Radiance at 490 and 555 nm; SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3; Center for Hydro-Optics and Remote Sensing/SDSU: San Diego, CA, USA, 2000; Chapter 3. [Google Scholar]
- Shi, W.; Wang, M. Characterization of global ocean turbidity from Moderate Resolution Imaging Spectroradiometer ocean color observations. J. Geophys. Res. Oceans 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Kratzer, S.; Brockmann, C.; Moore, G. Using MERIS full resolution data to monitor coastal waters—A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea. Remote Sens. Environ. 2008, 112, 2284–2300. [Google Scholar] [CrossRef]
- Wong, L.A.; Heinke, G.; Chen, J.C.; Xue, H.; Dong, L.X.; Su, J.L. A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters: 1. Simulations and comparison with observations. J. Geophys. Res. Oceans 2003, 108, 3156. [Google Scholar] [CrossRef]
- Wyrtki, K. Physical Oceanography of the Southeast Asian Waters: Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand; Naga Report 2; Scripps Institution of Oceanography: San Diego, CA, USA, 1961; 195p. [Google Scholar]
- Gan, J.; Li, H.; Curchitser, E.N.; Haidvogel, D.B. Modeling South China Sea circulation: Response to seasonal forcing regimes. J. Geophys. Res. 2006, 111, C06034. [Google Scholar] [CrossRef]
- Ye, H.; Chen, C.; Tang, S.; Tian, L.; Sun, Z.; Yang, C.; Liu, F. Remote sensing assessment of sediment variation in the Pearl River Estuary induced by Typhoon Vicente. Aquat. Ecosyst. Health Manag. 2014, 17, 271–279. [Google Scholar] [CrossRef]
- Cai, W.J.; Dai, M.H.; Wang, Y.C.; Zhai, W.D.; Huang, T.; Chen, S.T.; Zhang, F.; Chen, Z.Z.; Wang, Z.H. The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Cont. Shelf Res. 2004, 24, 1301–1319. [Google Scholar] [CrossRef]
- Chen, C.; Tang, S.; Pan, Z.; Zhan, H.; Larson, M.; Jonsson, L. Remotely sensed assessment of water quality levels in the Pearl River Estuary, China. Mar. Pollut. Bull. 2007, 54, 1267–1272. [Google Scholar] [CrossRef]
- Zhao, J.; Cao, W.; Wang, G.; Yang, D.; Yang, Y.; Sun, Z.; Zhou, W.; Liang, S. The variations in optical properties of CDOM throughout an algal bloom event. Estuar. Coast. Shelf Sci. 2009, 82, 225–232. [Google Scholar] [CrossRef]
- Mueller, J.L.; Fargion, G.S. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation; SeaWiFS Technical Report Series; NASA Center for AeroSpace Information: Linthicum Heights, MD, USA, 2002. [Google Scholar]
- Sun, D.; Hu, C.; Qiu, Z.; Shi, K. Estimating phycocyanin pigment concentration in productive inland waters using Landsat measurements: A case study in Lake Dianchi. Opt. Express 2015, 23, 3055–3074. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Li, Y.; Guo, Y.; Xu, Y.; Liu, G.; Du, C. Landsat-Based Long-Term Monitoring of Total Suspended Matter Concentration Pattern Change in the Wet Season for Dongting Lake, China. Remote Sens. 2015, 7, 13975–13999. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Y.; Shi, K.; Zhu, G.; Zhou, Y.; Zhang, Y.; Guo, Y. Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery. Sci. Total Environ. 2017, 599, 1705–1717. [Google Scholar] [CrossRef]
- Pierson, D.; Kratzer, S.; Strömbeck, N.; Håkansson, B. Relationship between the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400 nm–700 nm) in the Baltic Sea. Remote Sens. Environ. 2008, 112, 668–680. [Google Scholar] [CrossRef]
- Ruddick, K.G.; Ovidio, F.; Rijkeboer, M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Appl. Opt. 2000, 39, 897–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morel, A.; Gentili, B. Diffuse reflectance of oceanic waters: Its dependence on Sun angle as influenced by the molecular scattering contribution. Appl. Opt. 1991, 30, 4427–4438. [Google Scholar] [CrossRef] [PubMed]
- Morel, A.; Gentili, B. Diffuse reflectance of oceanic waters. II. Bidirectional aspects. Appl. Opt. 1993, 32, 6864–6879. [Google Scholar] [CrossRef] [PubMed]
- Morel, A.; Gentili, B. Diffuse reflectance of oceanic waters III Implication of bidirectionality for the remote-sensing problem. Appl. Opt. 1996, 35, 4850–4862. [Google Scholar] [CrossRef]
- Gordon, H. Normalized water-leaving radiance: Revisiting the influence of surface roughness. Appl. Opt. 2005, 44, 241–248. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Lu, S.L.; Liu, Z.H.; Li, H.; Li, Z.Q.; Wu, X.F.; Sun, C.H.; Xu, J.P. User Manual of Global Ocean Argo Gridded Dataset (BOA_Argo); Second Institute of Oceanography, MNR: Hangzhou, China, 2020; 28p. [Google Scholar]
- Zhang, T.; Fell, F. An empirical algorithm for determining the diffuse attenuation coefficient Kd in clear and turbid waters from spectral remote sensing reflectance. Limnol. Oceanogr. Methods 2007, 5, 457–462. [Google Scholar] [CrossRef]
- Tiwari, S.P.; Shanmugam, P. A Robust Algorithm to Determine Diffuse Attenuation Coefficient of Downwelling Irradiance from Satellite Data in Coastal Oceanic Waters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 1616–1622. [Google Scholar] [CrossRef]
- Morel, A.; Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. Ocean 2001, 106, 7163–7180. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Du, K.; Arnone, R. A model for the diffuse attenuation coefficient of downwelling irradiance. J. Geophys. Res. Ocean 2005, 110. [Google Scholar] [CrossRef]
- Wang, B.; An, S.-I. A method for detecting season-dependent modes of climate variability: S-EOF analysis. Geophys. Res. Lett. 2005, 32, 15710. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.L. Introduction of grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Liu, S.; Lin, Y. Grey Information: Theory and Practical Applications; Springer: London, UK, 2005. [Google Scholar]
- Wan, S.; Chang, S.-H. Crop classification with WorldView-2 imagery using Support Vector Machine comparing texture analysis approaches and grey relational analysis in Jianan Plain, Taiwan. Int. J. Remote Sens. 2018, 40, 8076–8092. [Google Scholar] [CrossRef]
- Xu, J.D.; Cai, S.Z.; Xiong, L.L.; Qiu, Y.; Zhu, D.Y. Study on coastal upwelling in eastern Hainan Island and western Guangdong in summer, 2006. Acta Oceanol. Sin. 2013, 35, 11–18, (In Chinese with English Abstract). [Google Scholar]
- Xu, J.D.; Cai, S.Z.; Xiong, L.L.; Qiu, Y.; Zhou, X.W.; Zhu, D.Y. Observational study on summertime upwelling in coastal seas between eastern Guangdong and southern Fujian. J. Trop. Oceanogr. 2014, 33, 1–9. [Google Scholar]
- Chen, J.Q.; Fu, Z.L.; Li, F.X. A study of upwelling over Minnan-Taiwan shoal fishing gournd. J. Oceanogr. Taiwan Strait 1982, 2, 5–13. [Google Scholar]
- Werdell, P.J.; Bailey, S.W. An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sens. Environ. 2005, 98, 122–140. [Google Scholar] [CrossRef]
- Werdell, J. Global Bio-optical Algorithms for Ocean Color Satellite Applications: Inherent Optical Properties Algorithm Workshop at Ocean Optics XIX; Barga, Italy, 3–4 October 2008. Eos 2009, 90, 4. [Google Scholar] [CrossRef]
- Werdell, P.J.; Franz, B.; Bailey, S.W.; Feldman, G.C.; Boss, E.; Brando, V.E.; Dowell, M.; Hirata, T.; Lavender, S.; Lee, Z.; et al. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 2013, 52, 2019–2037. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Wu, Q.; Wang, X.J.; Piao, X.Y.; Dai, Y.N. Correlation between reflectance spectra and contents of Chlorophyll-a in Chaohu Lake. J. Lake Sci. 2002, 14, 228–234. [Google Scholar]
- Chen, J.; Cui, T.; Tang, J.; Song, Q. Remote sensing of diffuse attenuation coefficient using MODIS imagery of turbid coastal waters: A case study in Bohai Sea. Remote Sens. Environ. 2014, 140, 78–93. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Christian, D.; Sheng, Y. Relative influence of various water quality parameters on light attenuation in Indian River Lagoon. Estuar. Coast. Shelf Sci. 2003, 57, 961–971. [Google Scholar] [CrossRef]
- Lund-Hansen, L.C. Diffuse attenuation coefficients Kd(PAR) at the estuarine North Sea–Baltic Sea transition: Time-series, partitioning, absorption, and scattering. Estuar. Coast. Shelf Sci. 2004, 61, 251–259. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Ma, R.; Feng, S.; Le, C. Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China. Fundam. Appl. Limnol. 2007, 170, 11–19. [Google Scholar] [CrossRef]
- Huang, M.F.; Wang, D.F.; Xing, X.F.; Wei, J.A.; Liu, D.; Zhao, Z.L.; Wang, W.X.; Liu, Y. The research on remote sensing mode of retrieving ag(440) in Zhujiang River Estuary and its application. Haiyang Xuebao 2015, 37, 67–77. [Google Scholar]
- Zhao, J.; Cao, W.; Xu, Z.; Ai, B.; Yang, Y.; Jin, G.; Wang, G.; Zhou, W.; Chen, Y.; Chen, H.; et al. Estimating CDOM Concentration in Highly Turbid Estuarine Coastal Waters. J. Geophys. Res. Oceans 2018, 123, 5856–5873. [Google Scholar] [CrossRef]
- Mann, K.H.; Lazier, J.R.N. Dynamics of Marine Ecosystem: Biological-Physical Interactions in the Oceans; Blackwell Science, Inc.: Cambridge, MA, USA, 1996. [Google Scholar]
Period | n | ap(443) (m−1) | ag(443) (m−1) | Ctsm (g˖m−3) | Cchla (mg˖m−3) |
---|---|---|---|---|---|
5 June 2012 | 15 | 0.31–1.61 | 0.12–0.58 | 4.16–25.70 | 1.52–9.67 |
Type | Form of Algorithm | Reference |
---|---|---|
Empirical model with AOP | Mueller, 2000 | |
Empirical model with Cchla | Morel et al., 2001 | |
Semianalytical model | Lee et al., 2005 | |
Empirical model with AOP | Zhang and Fell, 2007 | |
Semianalytical model | Wang et al., 2009 | |
Empirical model with AOP | Tiwari et al., 2014 |
Algorithm | Slope | Intercept | R2 | RMSE | MAD | MAPD (%) |
---|---|---|---|---|---|---|
Mueller | 0.01 | 0.26 | 0.56 | 1.15 | 0.96 | 70.32 |
Morel | 0.01 | 0.23 | 0.38 | 1.18 | 0.99 | 73.90 |
Zhang | 0.47 | 0.33 | 0.92 | 0.49 | 0.37 | 26.52 |
Lee | 0.60 | 0.39 | 0.91 | 0.31 | 0.27 | 25.51 |
Wang | 0.60 | 0.39 | 0.91 | 0.31 | 0.27 | 25.51 |
Tiwari | 0.28 | 0.36 | 0.92 | 0.70 | 0.54 | 37.10 |
S-EOF Mode | Single Contribution Rate | Cumulative Contribution Rate |
---|---|---|
1 | 56.67 | 56.67 |
2 | 24.49 | 81.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Ye, H.; Tang, S. Seasonal Variability of Diffuse Attenuation Coefficient in the Pearl River Estuary from Long-Term Remote Sensing Imagery. Remote Sens. 2020, 12, 2269. https://doi.org/10.3390/rs12142269
Yang C, Ye H, Tang S. Seasonal Variability of Diffuse Attenuation Coefficient in the Pearl River Estuary from Long-Term Remote Sensing Imagery. Remote Sensing. 2020; 12(14):2269. https://doi.org/10.3390/rs12142269
Chicago/Turabian StyleYang, Chaoyu, Haibin Ye, and Shilin Tang. 2020. "Seasonal Variability of Diffuse Attenuation Coefficient in the Pearl River Estuary from Long-Term Remote Sensing Imagery" Remote Sensing 12, no. 14: 2269. https://doi.org/10.3390/rs12142269
APA StyleYang, C., Ye, H., & Tang, S. (2020). Seasonal Variability of Diffuse Attenuation Coefficient in the Pearl River Estuary from Long-Term Remote Sensing Imagery. Remote Sensing, 12(14), 2269. https://doi.org/10.3390/rs12142269