Calibration and Impact of BeiDou Satellite-Dependent Timing Group Delay Bias
Abstract
:1. Introduction
2. BeiDou Timing Group Delay Bias from Precise Products
2.1. BeiDou Timing Group Delay
2.2. BeiDou Broadcast Ephemeris Error
2.3. Calibration of the Timing Group Delay Bias
3. BeiDou Timing Group Delay Bias from Network Solution
3.1. Estimation Method and Data Collection
3.2. Estimated Results
4. Impact of the Timing Group Delay Bias
- (1)
- Scheme 1 (S1): Normal satellite TGD correction.
- (2)
- Scheme 2 (S2): Use of the satellite-dependent TGD bias calibrated from precise products.
- (3)
- Scheme 3 (S3): Use of the TGD bias between BDS-2 and BDS-3 calibrated from precise products.
- (4)
- Scheme 4 (S4): Use of the satellite-dependent TGD bias calibrated from network solution.
4.1. Signal-In-Space Range Error Assessment
- (1)
- (2)
- Significant SISRE improvement can be observed after the TGD bias correction. Among the three correction schemes, the satellite-dependent TGD bias calibrated from precise products shows the best improvement, with an overall SISRE improvement from 0.71, 0.81, and 1.40 m to 0.64, 0.66, and 0.64 m at B1I, B3I, and B1I/B3I frequencies, whereas the improvement of the TGD bias from the network solution is slightly lower. This is due to the fact that the TGD bias from the precise product directly removes the systematic bias of each satellite during SISRE assessment. For the TGD bias only considering the systematic bias between BDS-2 and BDS-3, although a noticeable improvement can also be observed, it is still not comparable with the satellite-dependent TGD bias correction, especially at the B1I/B3I frequency. This is a result of the amplification of the TGD error after the ionosphere-free combination.
- (3)
- For Scheme 2, the SISRE performance at each frequency is similar, which indicates that after the TGD bias correction, the accuracy of the TGD is close to that of the DCB. It is promising to see that the SISRE of BDS-3 is within 0.5 m, which agrees with the results presented by Yang et al. [14] and fulfills the target of SISRE accuracy standard of the BDS [22].
4.2. Single Point Positioning
- (1)
- Among the results in the frequencies of B1I, B3I, and B1I/B3I, the SPP result at B1I/B3I exhibits the worst precision, which may due to the amplification of the observation noise and TGD errors after ionosphere-free combination. However, the SPP performance at B1I/B3I also improves to the maximum extent after TGD bias correction. For B1I or B3I frequencies, the improvement is not that significant.
- (2)
- Among the three schemes with TGD bias correction, the satellite-dependent TGD bias from precise products shows the best improvements of 5.6%, 8.4%, and 21.6% at B1I, B3I, and B1I/B3I frequencies. The satellite-dependent TGD bias correction from the network solution is at a similar level. Therefore, it is not recommended to only consider the TGD bias between BDS-2 and BDS-3.
5. Conclusions and Discussions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- China Satellite Navigation Office. BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B3I (Version 1.0). Available online: http://www.beidou.gov.cn/xt/gfxz/201805/P020180507527106075323.pdf (accessed on 24 November 2019).
- China Satellite Navigation Office. Development of the BeiDou Navigation Satellite System (Version 3.0). Available online: http://www.beidou.gov.cn/xt/gfxz/201812/P020190117356387956569.pdf (accessed on 24 November 2019).
- Xing, N.; Wu, X.; Hu, X.; Su, R. Secular changes in differential code bias of COMPASS system. In Proceedings of the China Satellite Navigation Conference (CSNC 2012), Guangzhou, China, 15–19 May 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 243–251. [Google Scholar]
- Wang, N.; Yuan, Y.; Li, Z.; Montenbruck, O.; Tan, B. Determination of differential code biases with multi-GNSS observations. J. Geod. 2016, 90, 209–228. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hauschild, A.; Steigenberger, P. Differential code bias estimation using multi-GNSS observations and global ionosphere maps. Navigation 2014, 61, 191–201. [Google Scholar] [CrossRef]
- Hauschild, A.; Montenbruck, O. A study on the dependency of GNSS pseudorange biases on correlator spacing. GPS Solut. 2016, 20, 159–171. [Google Scholar] [CrossRef]
- Tan, S. GNSS Systems and Engineering: The Chinese Beidou Navigation and Position Location Satellite; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 207–208. [Google Scholar]
- Wang, B.; Chen, J.; Wang, B.; Zhou, J. Signal-in-space Accuracy Analysis for BDS in 2016–2017. In Proceedings of the IGS Workshop 2018, Wuhan, China, 29 October–2 November 2018. [Google Scholar]
- Wang, N.; Li, Z.; Montenbruck, O.; Tang, C. Quality assessment of GPS, Galileo and BeiDou-2/3 satellite broadcast group delays. Adv. Space Res. 2019, 64, 1764–1779. [Google Scholar] [CrossRef]
- Lv, Y.; Geng, T.; Zhao, Q.; Xie, X.; Zhou, R. Initial assessment of BDS-3 preliminary system signal-in-space range error. GPS Solut. 2020, 24, 16. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Hauschild, A. Multi-GNSS signal-in-space range error assessment–Methodology and results. Adv. Space Res. 2018, 61, 3020–3038. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Hauschild, A. Broadcast versus precise ephemerides: A multi-GNSS perspective. GPS Solut. 2015, 19, 321–333. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, X.; Wang, J. Timing group delay and differential code bias corrections for BeiDou positioning. J. Geod. 2015, 89, 427–445. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, W.; Guo, S.; Mao, Y.; Yang, Y. Introduction to BeiDou-3 navigation satellite system. Navigation 2019, 66, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kubo, N.; Chen, J.; Wang, J.; Wang, H. Initial Positioning Assessment of BDS New Satellites and New Signals. Remote Sens. 2019, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhao, Q.; Guo, J.; Liu, J.; Chen, G. The contribution of intersatellite links to BDS-3 orbit determination: Model refinement and comparisons. Navigation 2019, 66, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Zhou, F.; Sun, B.; Wang, S.; Shi, B. The Impact of Satellite Time Group Delay and Inter-Frequency Differential Code Bias Corrections on Multi-GNSS Combined Positioning. Sensors 2017, 17, 602. [Google Scholar] [CrossRef] [PubMed]
- Böhm, J.; Möller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Schaer, S.; Gurtner, W.; Feltens, J. IONEX: The Ionosphere Map Exchange Format Version 1. Available online: ftp://igs.org/pub/data/format/ionex1.pdf (accessed on 24 November 2019).
- Wu, Z.; Zhou, S.; Hu, X.; Liu, L.; Shuai, T.; Xie, Y.; Chang, Z. Performance of the BDS3 experimental satellite passive hydrogen maser. GPS Solut. 2018, 22, 43. [Google Scholar] [CrossRef]
- Tang, C.; Hu, X.; Zhou, S.; Liu, L.; Pan, J.; Chen, L.; He, F. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements. J. Geod. 2018, 92, 1155–1169. [Google Scholar] [CrossRef]
- China Satellite Navigation Office. BeiDou Navigation Satellite System Open Service Performance Standard (Version 2.0). Available online: http://www.beidou.gov.cn/xt/gfxz/201812/P020181227529449178798.pdf (accessed on 24 November 2019).
- Chen, J.; Zhang, Y.; Wang, J.; Yang, S.; Dong, D.; Wang, J.; Qu, W.; Wu, B. A simplified and unified model of multi-GNSS precise point positioning. Adv. Space Res. 2017, 55, 125–134. [Google Scholar] [CrossRef]
System | Frequency (MHz) | |||||||
---|---|---|---|---|---|---|---|---|
1575.42 | 1561.098 | 1227.60 | 1176.45 | 1207.14 | 1191.795 | 1268.52 | 1278.75 | |
GPS | L1 | L2 | L5 | |||||
Galileo | E1 | E5a | E5b | E5 | E6 | |||
BDS-2 | B1I | B2I | B3I | |||||
BDS-3 | B1c | B1I | B2a | B2b | B3I |
PRN | dtgd0 | dtgd1 | PRN | dtgd0 | dtgd1 | PRN | dtgd0 | dtgd1 |
---|---|---|---|---|---|---|---|---|
1 | −1.24 | −0.97 | 12 | 2.74 | −2.86 | 26 | −0.72 | 0.44 |
2 | 1.98 | −1.29 | 13 | 1.28 | −1.64 | 27 | 0.22 | −0.29 |
3 | 2.03 | −1.55 | 14 | 1.67 | −2.12 | 28 | 0.28 | 0.69 |
4 | −2.00 | −1.37 | 16 | 1.65 | −1.33 | 29 | −0.59 | 0.71 |
5 | −2.01 | −1.34 | 19 | −1.30 | 2.84 | 30 | 0.17 | 1.22 |
6 | 1.04 | −1.53 | 20 | −2.66 | 3.39 | 32 | −1.15 | 1.94 |
7 | 1.30 | −1.90 | 21 | −1.45 | 1.73 | 33 | −2.03 | 2.53 |
8 | 2.05 | −2.64 | 22 | −1.48 | 1.71 | 34 | 0.40 | 1.29 |
9 | 2.00 | −1.67 | 23 | −3.29 | 2.32 | 35 | −0.04 | 0.31 |
10 | 1.85 | −2.31 | 24 | −1.13 | 1.07 | 36 | −0.20 | 1.85 |
11 | 1.13 | −1.84 | 25 | −0.96 | 1.85 | 37 | 0.43 | 0.79 |
Type | BDS-2 | BDS-3 | ||
---|---|---|---|---|
dtgd0 | dtgd1 | dtgd0 | dtgd1 | |
Average | 1.03 | −1.76 | −0.86 | 1.47 |
STD | 1.51 | 0.53 | 1.07 | 0.95 |
Receiver | Types or Version | Number | Note |
---|---|---|---|
Javad | TRE_3 TRE_3 DELTA | 22 | Track all BDS satellites |
Trimble | ALLOY NETR9 | 32 | Cannot track C31–C37 |
Septentrio | POLARX5TR POLARX5 | 33 | Cannot track B3I signal of C16, C23–C27, C29–C30, C35–C37 |
PRN | dtgd0 | dtgd1 | PRN | dtgd0 | dtgd1 | PRN | dtgd0 | dtgd1 |
---|---|---|---|---|---|---|---|---|
1 | −1.96 | −0.37 | 12 | 3.10 | −2.66 | 26 | −0.53 | 0.13 |
2 | 1.44 | −1.01 | 13 | 1.54 | −1.42 | 27 | 0.42 | −0.43 |
3 | 1.78 | −1.28 | 14 | 2.74 | −2.24 | 28 | 0.22 | 0.68 |
4 | −1.94 | −0.80 | 16 | 1.07 | −1.33 | 29 | −0.48 | 0.69 |
5 | −1.62 | −1.18 | 19 | −0.95 | 2.64 | 30 | 0.48 | 1.03 |
6 | 0.58 | −1.35 | 20 | −1.92 | 3.11 | 32 | −1.05 | 1.72 |
7 | 0.21 | −1.55 | 21 | −1.42 | 1.73 | 33 | −1.70 | 2.38 |
8 | 1.19 | −2.35 | 22 | −1.39 | 1.63 | 34 | 0.29 | 1.38 |
9 | 0.89 | −1.39 | 23 | −2.04 | 1.90 | 35 | 1.02 | 0.13 |
10 | 0.36 | −1.95 | 24 | −0.82 | 0.67 | 36 | 0.17 | 1.60 |
11 | 0.08 | −1.86 | 25 | 0.17 | 1.25 | 37 | 0.06 | 0.50 |
PRN | dtgd0 | dtgd1 | PRN | dtgd0 | dtgd1 | PRN | dtgd0 | dtgd1 |
---|---|---|---|---|---|---|---|---|
1 | 0.72 | −0.60 | 12 | −0.36 | −0.20 | 26 | −0.19 | 0.31 |
2 | 0.54 | −0.27 | 13 | −0.26 | −0.22 | 27 | −0.19 | 0.14 |
3 | 0.25 | −0.27 | 14 | −1.07 | 0.12 | 28 | 0.06 | 0.01 |
4 | −0.06 | −0.57 | 16 | 0.58 | 0.00 | 29 | −0.11 | 0.02 |
5 | −0.39 | −0.16 | 19 | −0.36 | 0.20 | 30 | −0.32 | 0.20 |
6 | 0.45 | −0.18 | 20 | −0.74 | 0.28 | 32 | −0.10 | 0.22 |
7 | 1.10 | −0.35 | 21 | −0.04 | 0.00 | 33 | −0.33 | 0.14 |
8 | 0.86 | −0.29 | 22 | −0.08 | 0.08 | 34 | 0.12 | −0.09 |
9 | 1.11 | −0.28 | 23 | −1.25 | 0.42 | 35 | −1.06 | 0.18 |
10 | 1.49 | −0.36 | 24 | −0.31 | 0.40 | 36 | −0.37 | 0.25 |
11 | 1.05 | 0.02 | 25 | −1.13 | 0.60 | 37 | 0.38 | 0.29 |
Scheme | Frequency | BDS-2 | BDS-3 | BDS |
---|---|---|---|---|
S1 | B1I | 0.92 | 0.54 | 0.71 |
B3I | 1.03 | 0.63 | 0.81 | |
B1I/B3I | 1.45 | 1.36 | 1.40 | |
S2 | B1I | 0.83 | 0.47 | 0.64 |
B3I | 0.85 | 0.49 | 0.66 | |
B1I/B3I | 0.83 | 0.48 | 0.64 | |
S3 | B1I | 0.90 | 0.52 | 0.69 |
B3I | 0.94 | 0.59 | 0.75 | |
B1I/B3I | 0.91 | 0.75 | 0.82 | |
S4 | B1I | 0.84 | 0.48 | 0.64 |
B3I | 0.89 | 0.52 | 0.69 | |
B1I/B3I | 0.86 | 0.50 | 0.66 |
Frequency | S1 (m) | S2 (m) | S3 (m) | S4 (m) | Impr2–1 | Impr3–1 | Impr4–1 |
---|---|---|---|---|---|---|---|
B1I | 2.69 | 2.54 | 2.67 | 2.57 | 5.6% | 0.8% | 4.7% |
B3I | 3.62 | 3.32 | 3.54 | 3.35 | 8.4% | 2.4% | 7.5% |
B1I/B3I | 5.10 | 4.00 | 4.27 | 4.04 | 21.6% | 16.3% | 20.7% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, H.; Chen, J.; Wang, A.; Meng, L.; Wang, E. Calibration and Impact of BeiDou Satellite-Dependent Timing Group Delay Bias. Remote Sens. 2020, 12, 192. https://doi.org/10.3390/rs12010192
Zhang Y, Wang H, Chen J, Wang A, Meng L, Wang E. Calibration and Impact of BeiDou Satellite-Dependent Timing Group Delay Bias. Remote Sensing. 2020; 12(1):192. https://doi.org/10.3390/rs12010192
Chicago/Turabian StyleZhang, Yize, Hu Wang, Junping Chen, Ahao Wang, Lingdong Meng, and Ershen Wang. 2020. "Calibration and Impact of BeiDou Satellite-Dependent Timing Group Delay Bias" Remote Sensing 12, no. 1: 192. https://doi.org/10.3390/rs12010192
APA StyleZhang, Y., Wang, H., Chen, J., Wang, A., Meng, L., & Wang, E. (2020). Calibration and Impact of BeiDou Satellite-Dependent Timing Group Delay Bias. Remote Sensing, 12(1), 192. https://doi.org/10.3390/rs12010192