Upstream GPS Vertical Displacement and its Standardization for Mekong River Basin Surface Runoff Reconstruction and Estimation
Abstract
:1. Introduction
2. Geographic Environment of the Mekong River Basin and Mekong River Delta
3. Datasets and Their Processing
3.1. In Situ Discharge and Passive Remote Sensing Data
3.2. Palmer Drought Severity Index
3.3. GRACE Terrestrial Water Storage and Its Standardization
3.4. GPS Vertical Displacement and Its Standardization
4. Methodology and Assessment Metrics
4.1. Correlative Analysis and Runoff Standardization
4.2. Assessment Metrics
5. Evaluation and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tarpanelli, A.; Barbetta, S.; Brocca, L.; Moramarco, T. River discharge estimation by using altimetry data and simplified flood routing modeling. Remote Sens. 2013, 5, 4145–4162. [Google Scholar] [CrossRef] [Green Version]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, A.A.; Jin, S. Lake level change and total water discharge in east Africa rift valley from satellite-based observations. Glob. Planet. Chang. 2014, 117, 79–90. [Google Scholar] [CrossRef]
- Huang, S.; Krysanova, V.; Zhai, J.; Su, B. Impact of intensive irrigation activities on river discharge under agricultural scenarios in the semi-arid Aksu river basin, northwest China. Water Resour. Manag. 2015, 29, 945–959. [Google Scholar] [CrossRef]
- Pauw, K.; Thurlow, J. Economic Losses and Poverty Effects of Droughts and Floods in Malawi; MaSSP policy notes 2; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2009. [Google Scholar]
- Zampieri, M.; Carmona Garcia, G.; Dentener, F.; Gumma, M.; Salamon, P.; Seguini, L.; Toreti, A. Surface freshwater limitation explains worst rice production anomaly in India in 2002. Remote Sens. 2018, 10, 244. [Google Scholar] [CrossRef] [Green Version]
- Alsdorf, D.E.; Lettenmaier, D.P. Tracking fresh water from space. Science 2003, 301, 1491–1494. [Google Scholar] [CrossRef] [Green Version]
- Sneeuw, N.; Lorenz, C.; Devaraju, B.; Tourian, M.J.; Riegger, J.; Kunstmann, H.; Bardossy, A. Estimating runoff using hydro-geodetic approaches. Surv. Geophys. 2014, 35, 1333–1359. [Google Scholar] [CrossRef]
- Vörösmarty, C.; Askew, A.; Grabs, W.; Barry, R.; Birkett, C.; Döll, P.; Goodison, B.; Hall, A.; Jenne, R.; Kitaev, L. Global water data: A newly endangered species. Eos Trans. Am. Geophys. Union 2001, 82, 54–58. [Google Scholar] [CrossRef]
- Wen, X.; Hu, D.; Cao, B.; Shen, S.; Tang, X. Dynamics change of Honghu lake’s water surface area and its driving force analysis based on remote sensing technique and TOPMODEL model. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012130. [Google Scholar] [CrossRef] [Green Version]
- Townsend, P.A.; Walsh, S.J. Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology 1998, 21, 295–312. [Google Scholar] [CrossRef]
- Yue, W.; Xu, J.; Tan, W. The relationship between land surface temperature and NDVI with remote sensing: Application to shanghai Landsat 7 ETM + data. Int. J. Remote Sens. 2007, 28, 3205–3226. [Google Scholar] [CrossRef]
- Pan, F.; Nichols, J. Remote sensing of river stage using the cross-sectional inundation area-river stage relationship (IARSR) constructed from digital elevation model data. Hydrol. Process. 2013, 27, 3596–3606. [Google Scholar] [CrossRef]
- Leopold, L.B.; Maddock, T. The Hydraulic Geometry of Stream Channels and some Physiographic Implications; US Government Printing Office: Washington, DC, USA, 1953.
- Chow, V.T.; Maidment, D.; Mays, L. Applied Hydrology. Series in Water Resources and Environmental Engineering; McGraw-Hill: Singapore, 1988. [Google Scholar]
- Bjerklie, D.M.; Moller, D.; Smith, L.C.; Dingman, S.L. Estimating discharge in rivers using remotely sensed hydraulic information. J. Hydrol. 2005, 309, 191–209. [Google Scholar] [CrossRef]
- LeFavour, G. Water slope and discharge in the Amazon river estimated using the shuttle radar topography mission digital elevation model. Geophys. Res. Lett. 2005, 32, L17404. [Google Scholar]
- Matgen, P.; Schumann, G.; Henry, J.B.; Hoffmann, L.; Pfister, L. Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. Int. J. Appl. Earth Obs. 2007, 9, 247–263. [Google Scholar] [CrossRef]
- Neal, J.; Schumann, G.; Bates, P.; Buytaert, W.; Matgen, P.; Pappenberger, F. A data assimilation approach to discharge estimation from space. Hydrol. Process. 2010, 23, 3641–3649. [Google Scholar] [CrossRef]
- Pavelsky, T.M.; Durand, M.T.; Andreadis, K.M.; Beighley, R.E.; Paiva, R.C.D.; Allen, G.H.; Miller, Z.F. Assessing the potential global extent of SWOT river discharge observations. J. Hydrol. 2014, 519, 1516–1525. [Google Scholar] [CrossRef]
- Sichangi, A.; Wang, L.; Hu, Z. Estimation of river discharge solely from remote-sensing derived data: An initial study over the Yangtze river. Remote Sens. 2018, 10, 1385. [Google Scholar] [CrossRef] [Green Version]
- Hirpa, F.A.; Hopson, T.M.; De Groeve, T.; Brakenridge, G.R.; Gebremichael, M.; Restrepo, P.J. Upstream satellite remote sensing for river discharge forecasting: Application to major rivers in South Asia. Remote Sens. Environ. 2013, 131, 140–151. [Google Scholar] [CrossRef]
- Shih, S.F.; Rahi, G.S. Seasonal variations of Manning’s roughness coefficient in a subtropical marsh. Trans. ASABE 1982, 25, 116–119. [Google Scholar] [CrossRef] [Green Version]
- Mailapalli, D.R.; Raghuwanshi, N.S.; Singh, R.; Schmitz, G.H.; Lennartz, F. Spatial and temporal variation of Manning’s roughness coefficient in furrow irrigation. J. Irrig. Drain. Eng. 2008, 134, 185–192. [Google Scholar] [CrossRef]
- Birkinshaw, S.J.; O’donnell, G.M.; Moore, P.; Kilsby, C.G.; Fowler, H.J.; Berry, P.A.M. Using satellite altimetry data to augment flow estimation techniques on the Mekong River. Hydrol. Process. 2010, 24, 3811–3825. [Google Scholar] [CrossRef]
- Riegger, J.; Tourian, M.J. Characterization of runoff-storage relationships by satellite gravimetry and remote sensing. Water Resour. Res. 2014, 50, 3444–3466. [Google Scholar] [CrossRef]
- Frappart, F.; Minh, K.D.; L’Hermitte, J.; Cazenave, A.; Ramillien, G.; Le Toan, T.; Mognard-Campbell, N. Water volume change in the lower Mekong from satellite altimetry and imagery data. Geophys. J. Int. 2006, 167, 570–584. [Google Scholar] [CrossRef] [Green Version]
- Calmant, S.; Seyler, F.; Cretaux, J.F. Monitoring continental surface waters by satellite altimetry. Surv. Geophys. 2008, 29, 247–269. [Google Scholar] [CrossRef]
- Beven, K.J. Rainfall-Runoff Modelling: The Primer; Wiley: Chichester, UK, 2011. [Google Scholar]
- Tourian, M.J.; Sneeuw, N.; Bárdossy, A. A quantile function approach to discharge estimation from satellite altimetry (ENVISAT). Water Resour. Res. 2013, 49, 4174–4186. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Zakharova, E.A.; Samain, O.; Mognard, N.M.; Cazenave, A. Ob’river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sens. Environ. 2004, 93, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Dubey, A.K.; Goswami, N.; Singh, R.P.; Chauhan, P. Use of SARAL/AltiKa observations for modeling river flow. Mar. Geod. 2015, 38 (Suppl. 1), 614–625. [Google Scholar] [CrossRef]
- Sulistioadi, Y.B.; Tseng, K.H.; Shum, C.K.; Hidayat, H.; Sumaryono, M.; Suhardiman, A.; Setiawan, F.; Sunarso, S. Satellite radar altimetry for monitoring small rivers and lakes in Indonesia. Hydrol. Earth Syst. Sci. 2015, 19, 341–359. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.; Cheng, Y.S.; Han, J.; Kao, R.; Huang, C.Y.; Wei, S.H.; Wang, H. Multi-Decadal Monitoring of Lake Level Changes in the Qinghai-Tibet Plateau by the TOPEX/Poseidon-Family Altimeters: Climate Implication. Remote Sens. 2016, 8, 446. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.; Swenson, S.; Zlotnicki, V.; Velicogna, I. Time-variable gravity from GRACE: First results. Geophys. Res. Lett. 2004, 31, L11501. [Google Scholar] [CrossRef] [Green Version]
- Crowley, J.W.; Mitrovica, J.X.; Bailey, R.C.; Tamisiea, M.E.; Davis, J.L. Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophys. Res. Lett. 2006, 33, L19402. [Google Scholar] [CrossRef]
- Sproles, E.A.; Reager, J.T.; Leibowitz, S.G. GRACE storage-runoff hystereses reveal the dynamics of regional watersheds. Hydrol. Earth Syst. Sci. 2015, 19, 3253–3272. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Li, J.; Fok, H.S.; Shum, C.K.; Li, Z. Earth surface deformation using GRACE and GPS techniques in the North China Plain. Sensors 2014, 14, 19861–19876. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.L.; Elósegui, P.; Mitrovica, J.X.; Tamisiea, M.E. Climate-driven deformation of the solid Earth from GRACE and GPS. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Van Dam, T.; Wahr, J.; Lavallée, D. A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Freymueller, J.T.; Jensen, T. Seasonal hydrological loading in southern Alaska observed by GPS and GRACE. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Blewitt, G.; Lavallée, D.; Clarke, P.; Nurutdinov, K. A new global mode of Earth deformation: Seasonal cycle detected. Science 2001, 294, 2342–2345. [Google Scholar] [CrossRef] [Green Version]
- Van Dam, T.; Wahr, J.; Milly, P.C.D.; Shmakin, A.B.; Blewitt, G.; Lavallée, D.; Larson, K.M. Crustal displacements due to continental water loading. Geophys. Res. Lett. 2001, 28, 651–654. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.; Fang, P.; Bock, Y.; Cheng, M.K.; Miyazaki, S. Anatomy of apparent seasonal variations from GPS-derived site position time series. J. Geophys. Res. Solid Earth 2002, 107. [Google Scholar] [CrossRef] [Green Version]
- Bevis, M.; Alsdorf, D.; Kendrick, E.; Fortes, L.P.; Forsberg, B.; Smalley, R., Jr.; Becker, J. Seasonal fluctuations in the mass of the Amazon River system and Earth’s elastic response. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Nahmani, S. Hydrological deformation induced by the West African Monsoon: Comparison of GPS, GRACE and loading models. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Freymueller, J. Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Argus, D.F.; Fu, Y.; Landerer, F.W. Seasonal variation in total water storage in California inferred from GPS observations of vertical motion. Geophys. Res. Lett. 2014, 41, 1971–1980. [Google Scholar] [CrossRef]
- Zhang, B.; Yao, Y.; Fok, H.S.; Hu, Y.; Chen, Q. Potential seasonal terrestrial water storage monitoring from GPS vertical displacements: A case study in the lower three-rivers headwater region, China. Sensors 2016, 16, 1526. [Google Scholar] [CrossRef]
- Liu, Y.; Fok, H.S.; Tenzer, R.; Chen, Q.; Chen, X. Akaike’s Bayesian Information Criterion for the Joint Inversion of Terrestrial Water Storage Using GPS Vertical Displacements, GRACE and GLDAS in Southwest China. Entropy 2019, 21, 664. [Google Scholar] [CrossRef] [Green Version]
- Fok, H.S.; Liu, Y. An Improved GPS-Inferred Seasonal Terrestrial Water Storage Using Terrain-Corrected Vertical Crustal Displacements Constrained by GRACE. Remote Sens. 2019, 11, 1433. [Google Scholar] [CrossRef] [Green Version]
- Fok, H.S.; He, Q. Water Level Reconstruction Based on Satellite Gravimetry in the Yangtze River Basin. ISPRS Int. J. Geo-Inf. 2018, 7, 286. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Fok, H.S.; Ma, Z.; Chen, Q. Upstream Remotely-Sensed Hydrological Variables and Their Standardization for Surface Runoff Reconstruction and Estimation of the Entire Mekong River Basin. Remote Sens. 2019, 11, 1064. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, V.G.; Montecino, H.C.; Ndehedehe, C.E.; Heck, B.; Gong, Z.; de Freitas, S.R.C.; Westerhaus, M. Space-based observations of crustal deflections for drought characterization in brazil. Sci. Total Environ. 2018, 644, 256–273. [Google Scholar] [CrossRef]
- Jones, P.D.; Hulme, M. Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol. 1996, 16, 361–377. [Google Scholar] [CrossRef]
- He, Q.; Fok, H.S.; Chen, Q.; Chun, K.P. Water Level Reconstruction and Prediction Based on Space-Borne Sensors: A Case Study in the Mekong and Yangtze River Basins. Sensors 2018, 18, 3076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong river delta to human activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, J.W. The Mekong river commission: Transboundary water resources planning and regional security. Geogr. J. 2002, 168, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Ziv, G.; Baran, E.; Nam, S.; Rodríguez-Iturbe, I.; Levin, S.A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl. Acad. Sci. USA 2012, 109, 5609–5614. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, J.P.; Saito, Y.; Nguyen, V.L. Recent evolution of the Mekong Delta and the impacts of dams. Earth Sci. Rev. 2017, 175, 1–17. [Google Scholar] [CrossRef]
- Hecht, J.S.; Lacombe, G.; Arias, M.E.; Dang, T.D.; Piman, T. Hydropower dams of the Mekong River basin: A review of their hydrological impacts. J. Hydrol. 2019, 568, 285–300. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Forsythe, N.; Kilsby, C.G.; Fowler, H.J.; Archer, D.R. Assessment of runoff sensitivity in the Upper Indus Basin to interannual climate variability and potential change using MODIS satellite data products. Mt. Res. Dev. 2012, 32, 16–30. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; Volume 30.
- Zhao, M.; Velicogna, I.; Kimball, J.S. Satellite observations of regional drought severity in the continental United States using GRACE-based terrestrial water storage changes. J. Clim. 2017, 30, 6297–6308. [Google Scholar] [CrossRef]
- MRC (Mekong River Commission). Overview of the Hydrology of the Mekong Basin; Mekong River Commission: Vientiane, Laos, 2005; Volume 82. [Google Scholar]
- You, Z.; Feng, Z.M.; Jiang, L.G.; Yang, Y.Z. Population distribution and its spatial relationship with terrain elements in Lancang-Mekong river basin. Mt. Res. 2014, 32, 21–29. [Google Scholar]
- Ma, M.; Liu, C.; Zhao, G.; Xie, H.; Jia, P.; Wang, D.; Wang, H.; Hong, Y. Flash Flood Risk Analysis Based on Machine Learning Techniques in the Yunnan Province, China. Remote Sens. 2019, 11, 170. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Su, H.; Chen, F.; Li, S.; Tian, J.; Qin, Y.; Zhang, R.; Chen, S.; Yang, Y.; Rong, Y. The changing pattern of droughts in the Lancang River Basin during 1960–2005. Theor. Appl. Clim. 2013, 111, 401–415. [Google Scholar] [CrossRef]
- Tang, J.; Yin, X.A.; Yang, P.; Yang, Z.F. Assessment of Contributions of Climatic Variation and Human Activities to Streamflow Changes in the Lancang River, China. Water Resour. Manag. 2014, 28, 2953–2966. [Google Scholar] [CrossRef]
- Ha, T.D.; Ouillon, S.; Van Vinh, G. Water and Suspended Sediment Budgets in the Lower Mekong from High-Frequency Measurements (2009–2016). Water 2018, 10, 846. [Google Scholar]
- Nie, Y.; Chen, H.; Wang, K.; Yang, J. Water source utilization by woody plants growing on dolomite outcrops and nearby soils during dry seasons in karst region of Southwest China. J. Hydrol. 2012, 420, 264–274. [Google Scholar] [CrossRef]
- Ma, S.; Wu, Q.; Wang, J.; Zhang, S. Temporal evolution of regional drought detected from GRACE TWSA and CCISM in Yunnan province, China. Remote Sens. 2017, 9, 1124. [Google Scholar] [CrossRef] [Green Version]
- Stone, R. Severe drought puts spotlight on Chinese dams. Science 2010, 327, 1311. [Google Scholar] [CrossRef]
- Lu, X.X.; Li, S.; Kummu, M.; Padawangi, R.; Wang, J.J. Observed changes in the water flow at Chiang Saen in the lower Mekong: Impacts of Chinese dams? Quat. Int. 2014, 336, 145–157. [Google Scholar] [CrossRef]
- Cochrane, T.A.; Arias, M.E.; Piman, T. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system. Hydrol. Earth Syst. Sci. 2014, 18, 4529–4541. [Google Scholar] [CrossRef] [Green Version]
- Dang, T.D.; Cochrane, T.A.; Arias, M.E. Future hydrological alterations in the Mekong Delta under the impact of water resources development, land subsidence and sea level rise. J. Hydrol. Reg. Stud. 2018, 15, 119–133. [Google Scholar] [CrossRef]
- Gugliotta, M.; Saito, Y.; Nguyen, V.L.; Ta, T.K.O.; Tamura, T. Sediment distribution and depositional processes along the fluvial to marine transition zone of the Mekong River delta, Vietnam. Sedimentology 2019, 66, 146–164. [Google Scholar] [CrossRef]
- Kummu, M.; Tes, S.; Yin, S.; Adamson, P.; Józsa, J.; Koponen, J.; Richey, J.; Sarkkula, J. Water balance analysis for the Tonle Sap Lake–floodplain system. Hydrol. Process. 2014, 28, 1722–1733. [Google Scholar] [CrossRef]
- Tangdamrongsub, N.; Ditmar, P.G.; Steele-Dunne, S.C.; Gunter, B.C.; Sutanudjaja, E.H. Assessing total water storage and identifying flood events over Tonlé Sap basin in Cambodia using GRACE and MODIS satellite observations combined with hydrological models. Remote Sens. Environ. 2016, 181, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Biancamaria, S.; Normandin, C.; Blarel, F.; Bourrel, L.; Aumont, M.; Azemar, P.; Vu, P.L.; Le Toan, T.; Lubac, B.; et al. Influence of recent climatic events on the surface water storage of the Tonle Sap Lake. Sci. Total Environ. 2018, 636, 1520–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, A.; Trenberth, K.E.; Qian, T. A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Cheng, M.; Tapley, B.D. Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of grace and ocean model output. J. Geophys. Res. 2008, 113, B08410. [Google Scholar] [CrossRef] [Green Version]
- Ramillien, G.; Frappart, F.; Cazenave, A.; Güntner, A. Time variations of land water storage from an inversion of 2 years of GRACE geoids. Earth Planet. Sci. Lett. 2005, 235, 283–301. [Google Scholar] [CrossRef] [Green Version]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Herring, T.; King, R.; McClusky, S. GAMIT reference manual, release 10.4. Mass. Inst. Technol. Camb. 2010. Available online: http://www-gpsg.mit.edu/~simon/gtgk/GAMIT_Ref.pdf (accessed on 10 July 2016).
- Fok, H.S.; Iz, H.B.; Schaffrin, B. Comparison of Four Geodetic Network Densification Solutions. Surv. Rev. 2009, 41, 44–56. [Google Scholar] [CrossRef]
- Altamimi, Z.; Collilieux, X.; Métivier, L. ITRF2008: An improved solution of the international terrestrial reference frame. J. Geod. 2011, 85, 457–473. [Google Scholar] [CrossRef] [Green Version]
- Petrie, E.J.; King, M.A.; Moore, P.; Lavallée, D.A. Higher-order ionospheric effects on the GPS reference frame and velocities. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere Mapping Functions for GPS and Very Long Baseline Interferometry from European Centre for Medium-Range Weather Forecasts Operational Analysis Data. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Boehm, J.; Heinkelmann, R.; Schuh, H. Short note: A global model of pressure and temperature for geodetic applications. J. Geod. 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean. Dyn. 2006, 56, 394–415. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS Conventions (2010); BUREAU INTERNATIONAL DES POIDS ET MESURES SEVRES (FRANCE). 2010. Available online: https://www.iers.org (accessed on 12 May 2019).
- Collilieux, X.; Altamimi, Z.; Coulot, D.; Ray, J.; Sillard, P. Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Ray, J.; Altamimi, Z.; Collilieux, X.; Dam, T.V. Anomalous harmonics in the spectra of GPS position estimates. GPS Solut. 2008, 12, 55–64. [Google Scholar] [CrossRef]
- Räsänen, T.A.; Kummu, M. Spatiotemporal influences of ENSO on precipitation and flood pulse in the Mekong River Basin. J. Hydrol. 2013, 476, 154–168. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Fok, H.S.; He, Q.; Chun, K.P.; Zhou, Z.; Chu, T. Application of ENSO and drought indices for water level reconstruction and prediction: A case study in the lower Mekong River estuary. Water 2018, 10, 58. [Google Scholar] [CrossRef] [Green Version]
Station | Data | Version | a (/Month) | b (mm/m) | Standard Deviation (a &b) | |
---|---|---|---|---|---|---|
MC pair reconstruction | Traditional RS data | NDVI | 0.0317 | –165.7979 | 0.0024 | 16.1466 |
LST | –0.1313 | 1976.1705 | 0.0125 | 183.5319 | ||
Space geodetic-observed Variables | CSR RL05 | 0.3467 | 41.3759 | 0.0238 | 1.8711 | |
GFZ RL05 | 0.3419 | 41.2598 | 0.0233 | 1.8605 | ||
JPL RL05 | 0.3515 | 43.1586 | 0.0221 | 1.7327 | ||
CSR-mascon | 0.2797 | 41.8492 | 0.0177 | 1.7470 | ||
CSR RL06 | 0.3419 | 41.3328 | 0.0214 | 1.7252 | ||
GPS-VD | 4.3926 | 45.4435 | 0.2740 | 1.7290 | ||
TC pair reconstruction | Traditional RS data | NDVI | 0.0281 | –142.1093 | 0.0020 | 13.3132 |
LST | –0.1143 | 1725.1072 | 0.0111 | 163.8818 | ||
Space geodetic-observed Variables | CSR RL05 | 0.3039 | 41.3581 | 0.0207 | 1.6265 | |
GFZ RL05 | 0.2994 | 41.2575 | 0.0204 | 1.6280 | ||
JPL RL05 | 0.3087 | 42.9218 | 0.0189 | 1.4840 | ||
CSR-mascon | 0.2419 | 41.7816 | 0.0169 | 1.6591 | ||
CSR RL06 | 0.2984 | 41.3252 | 0.0192 | 1.5479 | ||
GPS-VD | 3.7715 | 44.8722 | 0.2726 | 1.7202 |
Station | Variables/Indices | PCC | NRMSE | NSE | |
---|---|---|---|---|---|
MC-pair reconstruction | Traditional RS data | NDVI | 0.913 | 0.119 | 0.833 |
LST | 0.875 | 0.141 | 0.766 | ||
Space geodetic-observed Variables | CSR RL05 | 0.928 | 0.108 | 0.862 | |
GFZ RL05 | 0.929 | 0.108 | 0.864 | ||
JPL RL05 | 0.939 | 0.100 | 0.882 | ||
CSR-mascon | 0.938 | 0.101 | 0.880 | ||
CSR RL06 | 0.940 | 0.100 | 0.883 | ||
GPS-VD | 0.940 | 0.100 | 0.883 | ||
Drought Indices | CSR RL05 | 0.963 | 0.079 | 0.927 | |
GFZ RL05 | 0.963 | 0.079 | 0.927 | ||
JPL RL05 | 0.971 | 0.070 | 0.942 | ||
CSR-mascon | 0.962 | 0.080 | 0.925 | ||
CSR RL06 | 0.966 | 0.076 | 0.933 | ||
PDSI | 0.984 | 0.053 | 0.967 | ||
GPS-DSI | 0.970 | 0.070 | 0.942 | ||
TC-pair estimated from MC-pair reconstruction | Traditional RS data | NDVI | 0.923 | 0.129 | 0.837 |
LST | 0.870 | 0.164 | 0.739 | ||
Space geodetic-observed Variables | CSR RL05 | 0.930 | 0.126 | 0.847 | |
GFZ RL05 | 0.929 | 0.126 | 0.846 | ||
JPL RL05 | 0.942 | 0.116 | 0.870 | ||
CSR-mascon | 0.926 | 0.129 | 0.837 | ||
CSR RL06 | 0.936 | 0.121 | 0.858 | ||
GPS-VD | 0.922 | 0.134 | 0.826 | ||
Drought Indices | CSR RL05 | 0.948 | 0.118 | 0.865 | |
GFZ RL05 | 0.947 | 0.120 | 0.861 | ||
JPL RL05 | 0.955 | 0.111 | 0.880 | ||
CSR-mascon | 0.946 | 0.118 | 0.864 | ||
CSR RL06 | 0.952 | 0.113 | 0.877 | ||
PDSI | 0.967 | 0.091 | 0.920 | ||
GPS-DSI | 0.957 | 0.103 | 0.896 |
Station | Variables/Indices | PCC | NRMSE | NSE | |
---|---|---|---|---|---|
TC-pair reconstruction | Traditional RS data | NDVI | 0.923 | 0.124 | 0.852 |
LST | 0.870 | 0.159 | 0.756 | ||
Space geodetic-observed Variables | CSR RL05 | 0.930 | 0.118 | 0.864 | |
GFZ RL05 | 0.929 | 0.118 | 0.864 | ||
JPL RL05 | 0.942 | 0.108 | 0.887 | ||
CSR-mascon | 0.926 | 0.121 | 0.858 | ||
CSR RL06 | 0.936 | 0.113 | 0.877 | ||
GPS-VD | 0.922 | 0.125 | 0.849 | ||
Drought Indices | CSR RL05 | 0.964 | 0.086 | 0.929 | |
GFZ RL05 | 0.964 | 0.086 | 0.929 | ||
JPL RL05 | 0.964 | 0.085 | 0.929 | ||
CSR-mascon | 0.964 | 0.086 | 0.929 | ||
CSR RL06 | 0.962 | 0.087 | 0.926 | ||
PDSI | 0.975 | 0.071 | 0.951 | ||
GPS-DSI | 0.969 | 0.080 | 0.938 | ||
MC-pair estimated from TC-pair reconstruction | Traditional RS data | NDVI | 0.913 | 0.123 | 0.822 |
LST | 0.875 | 0.145 | 0.753 | ||
Space geodetic-observed Variables | CSR RL05 | 0.928 | 0.113 | 0.849 | |
GFZ RL05 | 0.929 | 0.113 | 0.850 | ||
JPL RL05 | 0.939 | 0.106 | 0.868 | ||
CSR-mascon | 0.938 | 0.108 | 0.864 | ||
CSR RL06 | 0.940 | 0.106 | 0.868 | ||
GPS-VD | 0.940 | 0.107 | 0.866 | ||
Drought Indices | CSR RL05 | 0.955 | 0.093 | 0.898 | |
GFZ RL05 | 0.956 | 0.092 | 0.901 | ||
JPL RL05 | 0.956 | 0.092 | 0.901 | ||
CSR-mascon | 0.953 | 0.095 | 0.894 | ||
CSR RL06 | 0.954 | 0.094 | 0.896 | ||
PDSI | 0.970 | 0.080 | 0.924 | ||
GPS-DSI | 0.960 | 0.089 | 0.907 |
Station | Variables/Indices | PCC | NRMSE | NSE | |
---|---|---|---|---|---|
MC-pair reconstruction | Traditional RS data | NDVI | 0.905 | 0.124 | 0.818 |
LST | 0.817 | 0.168 | 0.667 | ||
Space geodetic-observed Variables | CSR RL05 | 0.954 | 0.088 | 0.910 | |
GFZ RL05 | 0.956 | 0.085 | 0.915 | ||
JPL RL05 | 0.958 | 0.084 | 0.918 | ||
CSR-mascon | 0.918 | 0.116 | 0.843 | ||
CSR RL06 | 0.946 | 0.094 | 0.895 | ||
GPS-VD | 0.911 | 0.120 | 0.829 | ||
Drought Indices | CSR RL05 | 0.972 | 0.069 | 0.944 | |
GFZ RL05 | 0.970 | 0.072 | 0.940 | ||
JPL RL05 | 0.984 | 0.052 | 0.969 | ||
CSR-mascon | 0.967 | 0.075 | 0.935 | ||
CSR RL06 | 0.971 | 0.070 | 0.942 | ||
PDSI | 0.974 | 0.067 | 0.948 | ||
GPS-DSI | 0.972 | 0.069 | 0.945 | ||
TC-pair estimated from MC-pair reconstruction | Traditional RS data | NDVI | 0.929 | 0.124 | 0.851 |
LST | 0.816 | 0.189 | 0.652 | ||
Space geodetic-observed Variables | CSR RL05 | 0.945 | 0.114 | 0.873 | |
GFZ RL05 | 0.947 | 0.113 | 0.876 | ||
JPL RL05 | 0.952 | 0.108 | 0.887 | ||
CSR-mascon | 0.897 | 0.150 | 0.782 | ||
CSR RL06 | 0.937 | 0.121 | 0.858 | ||
GPS-VD | 0.888 | 0.156 | 0.764 | ||
Drought Indices | CSR RL05 | 0.955 | 0.111 | 0.881 | |
GFZ RL05 | 0.950 | 0.118 | 0.866 | ||
JPL RL05 | 0.966 | 0.099 | 0.905 | ||
CSR-mascon | 0.949 | 0.113 | 0.875 | ||
CSR RL06 | 0.957 | 0.106 | 0.891 | ||
PDSI | 0.962 | 0.096 | 0.911 | ||
GPS-DSI | 0.956 | 0.105 | 0.893 |
Station | Variables/Indices | PCC | NRMSE | NSE | |
---|---|---|---|---|---|
TC-pair reconstruction | Traditional RS data | NDVI | 0.929 | 0.119 | 0.862 |
LST | 0.816 | 0.186 | 0.666 | ||
Space geodetic-observed Variables | CSR RL05 | 0.945 | 0.105 | 0.894 | |
GFZ RL05 | 0.947 | 0.103 | 0.897 | ||
JPL RL05 | 0.952 | 0.098 | 0.907 | ||
CSR-mascon | 0.897 | 0.142 | 0.805 | ||
CSR RL06 | 0.937 | 0.112 | 0.879 | ||
GPS-VD | 0.888 | 0.148 | 0.788 | ||
Drought Indices | CSR RL05 | 0.965 | 0.085 | 0.930 | |
GFZ RL05 | 0.964 | 0.085 | 0.930 | ||
JPL RL05 | 0.970 | 0.078 | 0.941 | ||
CSR-mascon | 0.963 | 0.087 | 0.927 | ||
CSR RL06 | 0.963 | 0.087 | 0.927 | ||
PDSI | 0.969 | 0.079 | 0.940 | ||
GPS-DSI | 0.972 | 0.076 | 0.945 | ||
MC-pair estimated from TC-pair reconstruction | Traditional RS data | NDVI | 0.905 | 0.127 | 0.810 |
LST | 0.817 | 0.171 | 0.656 | ||
Space geodetic-observed Variables | CSR RL05 | 0.954 | 0.095 | 0.894 | |
GFZ RL05 | 0.956 | 0.093 | 0.899 | ||
JPL RL05 | 0.958 | 0.091 | 0.902 | ||
CSR-mascon | 0.918 | 0.122 | 0.825 | ||
CSR RL06 | 0.946 | 0.101 | 0.880 | ||
GPS-VD | 0.911 | 0.127 | 0.812 | ||
Drought Indices | CSR RL05 | 0.957 | 0.091 | 0.904 | |
GFZ RL05 | 0.957 | 0.091 | 0.903 | ||
JPL RL05 | 0.965 | 0.083 | 0.918 | ||
CSR-mascon | 0.954 | 0.094 | 0.897 | ||
CSR RL06 | 0.955 | 0.093 | 0.899 | ||
PDSI | 0.959 | 0.089 | 0.906 | ||
GPS-DSI | 0.963 | 0.086 | 0.913 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fok, H.S.; Zhou, L.; Liu, Y.; Ma, Z.; Chen, Y. Upstream GPS Vertical Displacement and its Standardization for Mekong River Basin Surface Runoff Reconstruction and Estimation. Remote Sens. 2020, 12, 18. https://doi.org/10.3390/rs12010018
Fok HS, Zhou L, Liu Y, Ma Z, Chen Y. Upstream GPS Vertical Displacement and its Standardization for Mekong River Basin Surface Runoff Reconstruction and Estimation. Remote Sensing. 2020; 12(1):18. https://doi.org/10.3390/rs12010018
Chicago/Turabian StyleFok, Hok Sum, Linghao Zhou, Yongxin Liu, Zhongtian Ma, and Yutong Chen. 2020. "Upstream GPS Vertical Displacement and its Standardization for Mekong River Basin Surface Runoff Reconstruction and Estimation" Remote Sensing 12, no. 1: 18. https://doi.org/10.3390/rs12010018
APA StyleFok, H. S., Zhou, L., Liu, Y., Ma, Z., & Chen, Y. (2020). Upstream GPS Vertical Displacement and its Standardization for Mekong River Basin Surface Runoff Reconstruction and Estimation. Remote Sensing, 12(1), 18. https://doi.org/10.3390/rs12010018