Cohesion Intensive Deep Hashing for Remote Sensing Image Retrieval
Abstract
:1. Introduction
1.1. Background
1.2. Motivation
1.3. Contribution
2. Cohesion Intensive Deep Hashing
2.1. Residual Hash Net
2.2. Cohesion Intensive Loss Function
3. Experimental Results
3.1. Experimental Setup
3.2. Results and Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Q.; Gao, J.; Yuan, Y. Embedding Structured Contour and Location Prior in Siamesed Fully Convolutional Networks for Road Detection. IEEE Trans. Intell. Transp. Syst. 2018, 19, 230–241. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Zhou, H.; Zhao, J.; Gao, Y.; Jiang, J.; Tian, J. Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6469–6481. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, J.; Jiang, J.; Zhou, H.; Guo, X. Locality preserving matching. Int. J. Comput. Vis. 2019, 127, 512–531. [Google Scholar] [CrossRef]
- Li, Y.; Tao, C.; Tan, Y.; Shang, K.; Tian, J. Unsupervised Multilayer Feature Learning for Satellite Image Scene Classification. IEEE Geosci. Remote Sens. Lett. 2016, 13, 157–161. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Huang, X.; Yuille, A.L. Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images. Isprs J. Photogramm. Remote Sens. 2018, 146, 182–196. [Google Scholar] [CrossRef]
- Patil, R.; Sharma, S.K.; Tignath, S. Remote Sensing and GIS based soil erosion assessment from an agricultural watershed. Arab. J. Geosci. 2015, 8, 6967–6984. [Google Scholar] [CrossRef]
- Wang, J.; Kumar, S.; Chang, S.F. Semi-supervised hashing for scalable image retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010. [Google Scholar]
- Datar, M.; Immorlica, N.; Indyk, P.; Mirrokni, V.S. Locality-sensitive hashing scheme based on p-stable distributions. Symp. Comput. Geom. 2004, 8–11, 253–262. [Google Scholar]
- Weiss, Y.; Torralba, A.; Fergus, R. Spectral Hashing. Neural Inf. Process. Syst. 2008, 8–11, 1753–1760. [Google Scholar]
- Gong, Y.; Lazebnik, S. Iterative quantization: A procrustean approach to learning binary codes. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 2916–2929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukac, N.; Zalik, B.; Cui, S.; Datcu, M. GPU-based kernelized locality-sensitive hashing for satellite image retrieval. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1468–1471. [Google Scholar]
- Demir, B.; Bruzzone, L. Hashing-Based Scalable Remote Sensing Image Search and Retrieval in Large Archives. IEEE Trans. Geosci. Remote Sens. 2016, 54, 892–904. [Google Scholar] [CrossRef]
- Li, P.; Ren, P. Partial Randomness Hashing for Large-Scale Remote Sensing Image Retrieval. IEEE Geosci. Remote Sens. Lett. 2017, 14, 464–468. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Zhu, X.; Ren, P. Online Hashing for Scalable Remote Sensing Image Retrieval. Remote Sens. 2018, 10, 709. [Google Scholar] [CrossRef] [Green Version]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Oliva, A.; Torralba, A. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. Int. J. Comput. Vis. 2001, 42, 145–175. [Google Scholar] [CrossRef]
- Yu, X.; Wu, X.; Luo, C.; Peng, R. Deep learning in remote sensing scene classification: A data augmentation enhanced convolutional neural network framework. Gisci. Remote Sens. 2017, 54, 741–758. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.; Jean, N.; Burke, M.; Lobell, D.; Ermon, S. Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016. [Google Scholar]
- Li, Y.; Zhang, Y.; Huang, X.; Zhu, H.; Ma, J. Large-Scale Remote Sensing Image Retrieval by Deep Hashing Neural Networks. IEEE Trans. Geosci. Remote Sens. 2018, 56, 950–965. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Huang, X.; Ma, J. Learning Source-Invariant Deep Hashing Convolutional Neural Networks for Cross-Source Remote Sensing Image Retrieval. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6521–6536. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2015. [Google Scholar]
- Cao, Z.; Long, M.; Wang, J.; Yu, P.S. HashNet: Deep Learning to Hash by Continuation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5609–5618. [Google Scholar]
- Yang, Y.; Newsam, S.D. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Xia, G.S.; Hu, J.; Fan, H.; Shi, B.; Xiang, B.; Zhong, Y.; Zhang, L. AID: A Benchmark Dataset for Performance Evaluation of Aerial Scene Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar] [CrossRef] [Green Version]
- Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. In Proceedings of the International Conference on Machine Learning 2014, Beijing, China, 21–26 June 2014. [Google Scholar]
- Shen, F.; Shen, C.; Liu, W.; Shen, H.T. Supervised Discrete Hashing. In Proceedings of the Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 37–45. [Google Scholar]
- Kang, W.; Li, W.; Zhou, Z. Column sampling based discrete supervised hashing. In Proceedings of the AAAI Conference on Artificial Intelligence 2016, Phoenix, AZ, USA, 12–17 February 2016; pp. 1230–1236. [Google Scholar]
- Zhu, H.; Long, M.; Wang, J.; Cao, Y. Deep Hashing Network for efficient similarity retrieval. In Proceedings of the AAAI Conference on Artificial Intelligence 2016, Phoenix, AZ, USA, 12–17 February 2016; pp. 2415–2421. [Google Scholar]
- Liu, H.; Wang, R.; Shan, S.; Chen, X. Deep Supervised Hashing for Fast Image Retrieval. In Proceedings of the Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2064–2072. [Google Scholar]
Layer | Configuration |
---|---|
Conv1 | , 64, Stride 2 |
Res-Block1 | |
Res-Block2 | |
Res-Block3 | |
Res-Block4 | |
Fc1 |
Method | GIST | PRH | KSH | COSDISH | SDH | DSH | DHN | DHNNs | CIDH | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Bits | mAP | Time | mAP | Time | mAP | mAP | mAP | mAP | mAP | mAP | mAP |
K = 32 | 0.4672 | 0.022907 | 0.3361 | 0.000846 | 0.4609 | 0.3235 | 0.5943 | 0.6327 | 0.6768 | 0.9396 | 0.9846 |
K = 64 | 0.4672 | 0.022907 | 0.3667 | 0.000927 | 0.5049 | 0.3631 | 0.6551 | 0.6831 | 0.7423 | 0.9718 | 0.9853 |
K = 96 | 0.4672 | 0.022907 | 0.4015 | 0.000971 | 0.5114 | 0.3840 | 0.6809 | 0.7342 | 0.7867 | 0.9762 | 0.9858 |
Method | GIST | PRH | KSH | COSDISH | SDH | DSH | DHN | DHNNs | CIDH | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Bits | mAP | Time | mAP | Time | mAP | mAP | mAP | mAP | mAP | mAP | mAP |
K = 32 | 0.2439 | 0.040966 | 0.1816 | 0.000801 | 0.2164 | 0.1988 | 0.2444 | 0.4191 | 0.6953 | - | 0.8780 |
K = 64 | 0.2439 | 0.040966 | 0.2051 | 0.000872 | 0.2492 | 0.2245 | 0.3285 | 0.4585 | 0.7464 | - | 0.9043 |
K = 96 | 0.2439 | 0.040966 | 0.2199 | 0.000946 | 0.2599 | 0.2158 | 0.2599 | 0.4636 | 0.7682 | - | 0.9245 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Li, P.; Bai, X.; Grecos, C.; Zhang, X.; Ren, P. Cohesion Intensive Deep Hashing for Remote Sensing Image Retrieval. Remote Sens. 2020, 12, 101. https://doi.org/10.3390/rs12010101
Han L, Li P, Bai X, Grecos C, Zhang X, Ren P. Cohesion Intensive Deep Hashing for Remote Sensing Image Retrieval. Remote Sensing. 2020; 12(1):101. https://doi.org/10.3390/rs12010101
Chicago/Turabian StyleHan, Lirong, Peng Li, Xiao Bai, Christos Grecos, Xiaoyu Zhang, and Peng Ren. 2020. "Cohesion Intensive Deep Hashing for Remote Sensing Image Retrieval" Remote Sensing 12, no. 1: 101. https://doi.org/10.3390/rs12010101
APA StyleHan, L., Li, P., Bai, X., Grecos, C., Zhang, X., & Ren, P. (2020). Cohesion Intensive Deep Hashing for Remote Sensing Image Retrieval. Remote Sensing, 12(1), 101. https://doi.org/10.3390/rs12010101