Ground Deformation Analysis of Bolvadin (W. Turkey) by Means of Multi-Temporal InSAR Techniques and Sentinel-1 Data
Abstract
:1. Introduction
2. Geographic and Geologic Setting of the Study Area
3. Materials and Methods
3.1. Sentinel-1 Dataset
3.2. Multi-Temporal InSAR Processing
4. Results
4.1. Multi-Temporal InSAR Results
4.1.1. Mean Velocity Maps
4.1.2. Time Series
4.2. Comparison with Lithology
4.3. Comparison with Water Surface Area of Eber Lake
4.4. Comparison with Groundwater Level
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Strozzi, T.; Wegmüller, U.; Tosi, L.; Bitelli, G.; Spreckels, V. Land subsidence monitoring with differential SAR interferometry. Photogramm. Eng. Remote Sens. 2001, 67, 1261–1270. [Google Scholar]
- Galloway, D.; Jones, D.R.; Ingebritsen, S.E. Land Subsidence in the United States; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 1999; Volume 1182.
- Holzer, T.L.; Galloway, D.L. Impacts of land subsidence caused by withdrawal of underground fluids in the united states. Rev. Eng. Geol. 2005, 16, 87–99. [Google Scholar]
- Tomás, R.; Li, Z. Earth observations for geohazards: Present and future challenges. Remote Sens. 2017, 9, 194. [Google Scholar] [CrossRef]
- Demirtaş, R.; Tepeuğur, E. Bolvadin (Afyon) Merkez yerleşim alaninda son 15 yillik dönemde oluşmuş yüzey kiriklarinin oluşum mekanizmasi. In Proceedings of the ATAG-21: Aktif Tektonik Araştırma Grubu Çalıştayı, Afyon, Turkey, 26–28 October 2017. [Google Scholar]
- Özkaymak, Ç.; Sözbilir, H.; Tiryakioğlu, İ.; Baybura, T. Bolvadin’de (Afyon-Akşehir Grabeni, Afyon) Gözlenen Yüzey Deformasyonlarının Jeolojik, Jeomorfolojik ve Jeodezik Analizi. Türk. Jeol. Bül. Geolog. Bull. Turk. 2017, 60, 169–189. [Google Scholar] [CrossRef] [Green Version]
- Emre, Ö.; Duman, T.Y.; Özalp, S.; Olgun, S.; Elmaci, H. 1:250,000 Scale active fault map series of Turkey Afyon (NJ 36-5) quadrangle. In General Directorate of Mineral Research and Exploration; (Serial number: 16); General Directorate of Mineral Research and Expansion (MTA): Ankara, Turkey, 2011. [Google Scholar]
- Tiryakioğlu, İ.; Uğur, M.A.; Yalçın, M.; Baybura, T.; Yilmaz, M.; Özkaymak, Ç.; Sözbilir, H. Akşehir Simav Fay Sistemindeki Güncel Tektonik Hareketlerinin Izlenmesi: Nivelman Çalişmalari. 4. In Proceedings of the Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı, Eskişehir, Turkey, 11–13 October 2017. [Google Scholar]
- Qu, F.; Lu, Z.; Zhang, Q.; Bawden, G.W.; Kim, J.-W.; Zhao, C.; Qu, W. Mapping ground deformation over Houston-Galveston, Texas using multi-temporal InSAR. Remote Sens. Environ. 2015, 169, 290–306. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: differential radar interferometry. J. Geophys. Res. Solid Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Tomás, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorquí, J.J.; Lopez-Sanchez, J.M.; Duque, S. Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain. Environ. Earth Sci 2014, 71, 163–181. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2011, 514, 1–13. [Google Scholar] [CrossRef]
- Osmanoğlu, B.; Sunar, F.; Wdowinski, S.; Cabral-Cano, E. Time series analysis of InSAR data: Methods and trends. ISPRS J. Photogramm. Remote Sens. 2015, 115, 90–102. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Bell, J.W.; Amelung, F.; Ferretti, A.; Bianchi, M.; Novali, F. Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resour. Res. 2008, 44, 1–18. [Google Scholar] [CrossRef]
- Bonì, R.; Herrera, G.; Meisina, C.; Notti, D.; Béjar-Pizarro, M.; Zucca, F.; Gonzàlez, P.J.; Palano, M.; Tomàs, R.; Fernàndez, J.; et al. Twenty-year advanced DIn-SAR analysis of severe land subsidence: The Alto Guadalentín Basin (Spain) case study. Eng. Geol. 2015, 198, 40–52. [Google Scholar] [CrossRef]
- Chen, M.; Tomás, R.; Li, Z.; Motagh, M.; Li, T.; Hu, L.; Gong, H.; Li, X.; Yu, J.; Gong, X. Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sens. 2016, 8, 468. [Google Scholar] [CrossRef]
- Chaussard, E.; Milillo, P.; Bürgmann, R.; Perissin, D.; Fielding, E.J.; Baker, B. Remote sensing of ground deformation for monitoring groundwater management practices: Application to the Santa Clara Valley During the 2012–2015 California drought. J. Geophys. Res. Solid Earth 2017, 122, 8566–8582. [Google Scholar] [CrossRef]
- Haghighi, M.H.; Motagh, M. Ground surface response to continuous compaction of aquifer system in Tehran, Iran: Results from a long-term multi-sensor InSAR analysis. Remote Sens. Environ. 2019, 221, 534–550. [Google Scholar] [CrossRef]
- Imamoglu, M.; Kahraman, F.; Abdikan, S. Preliminary results of temporal deformation analysis in Istanbul using multi-temporal InSAR with Sentinel-1 SAR data. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Aslan, G.; Cakır, Z.; Ergintav, S.; Lasserre, C.; Renard, F. Analysis of secular ground motions in Istanbul from a long-term InSAR time-series (1992–2017). Remote Sens. 2018, 10, 408. [Google Scholar] [CrossRef]
- Bonì, R.; Bosino, A.; Meisina, C.; Novellino, A.; Bateson, L.; McCormack, H. A methodology to detect and characterize uplift phenomena in urban areas using Sentinel-1 data. Remote Sens. 2018, 10, 607. [Google Scholar] [CrossRef]
- Erten, E.; Rossi, C. The worsening impacts of land reclamation assessed with Sentinel-1: The Rize (Turkey) test case. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 57–64. [Google Scholar] [CrossRef]
- Abdikan, S.; Arıkan, M.; Şanlı, F.B.; Çakir, Z. Monitoring of coal mining subsidence in peri-urban area of Zongundak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environ. Earth Sci. 2014, 71, 4081–4089. [Google Scholar] [CrossRef]
- Czikhardt, R.; Papco, J.; Bakon, M.; Liscak, P.; Ondrejka, P.; Zlocha, M. Ground stability monitoring of undermined and landslide prone areas by means of sentinel-1 multi-temporal InSAR, case study from Slovakia. Geosciences 2017, 7, 87. [Google Scholar] [CrossRef]
- Carlà, T.; Farina, P.; Intrieri, E.; Ketizmen, H.; Casagli, N. Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine. Eng. Geol. 2018, 235, 39–52. [Google Scholar] [CrossRef]
- Béjar-Pizarro, M.; Notti, D.; Mateos, R.M.; Ezquerro, P.; Centolanza, G.; Herrera, G.; Bru, G.; Sanabria, M.; Solari, L.; Duro, J.; et al. Mapping vulnerable urban areas affected by slow-moving landslides using sentinel-1 InSAR data. Remote Sens. 2017, 9, 876. [Google Scholar] [CrossRef]
- Intrieri, E.; Raspini, F.; Fumagalli, A.; Lu, P.; Del Conte, S.; Farina, P.; Allievi, J.; Ferretti, A.; Casagli, N. The maoxian landslide as seen from space: Detecting precursors of failure with sentinel-1 data. Landslides 2018, 15, 123–133. [Google Scholar] [CrossRef]
- Bayer, B.; Simoni, A.; Mulas, M.; Corsini, A.; Schmidt, D. Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR. Geomorphology 2018, 308, 293–306. [Google Scholar] [CrossRef]
- Kim, J.W.; Lu, Z.; Degrandpre, K. Ongoing deformation of sinkholes in Wink, Texas, observed by time-series Sentinel-1a SAR interferometry (preliminary results). Remote Sens. 2016, 8, 313. [Google Scholar] [CrossRef]
- Caló, F.; Notti, D.; Galve, J.P.; Abdikan, S.; Görüm, T.; Pepe, A.; Balik Şanli, F. DInSAR-based detection of land subsidence and correlation with groundwater depletion in Konya Plain, Turkey. Remote Sens. 2017, 9, 83. [Google Scholar] [CrossRef]
- Hussain, E.; Wright, T.J.; Walters, R.J.; Bekaert, D.P.; Lloyd, R.; Hooper, A. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault. Nat. Commun. 2018, 9, 1392. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Ji, L.; Zhu, L.; Zhao, C. InSAR-constrained interseismic deformation and potential seismogenic asperities on the Altyn Tagh Fault at 91.5–95° E, Northern Tibetan Plateau. Remote Sens. 2018, 10, 943. [Google Scholar] [CrossRef]
- Sener, E.; Davraz, A.; Sener, S. Investigation of Aksehir and Eber Lakes (SW Turkey) coastline change with multitemporal satellite images. Water Resour. Manag. 2010, 24, 727–745. [Google Scholar] [CrossRef]
- Yıldırım, Ü.; Erdoğan, S.; Uysal, M. Changes in the coastline and water level of the Akşehir and Eber Lakes between 1975 and 2009. Water Resour. Manag. 2011, 25, 941–962. [Google Scholar] [CrossRef]
- Köle, M.M.; Ataol, M.; Erkal, T. Eber ve Akşehir Gölleri’nde 1990–2016 Yılları arasinda gerçekleşen alansal değişimler. In Proceedings of the TUCAUM 2016 International Geography Symposium Book of Proceedings, Ankara, Turkey, 13–14 October 2016. [Google Scholar]
- Sentinel Application Platform (SNAP). Available online: http://step.esa.int/main/toolboxes/snap (accessed on 20 December 2018).
- Miranda, N. Sentinel-1 Instrument Processing Facility: Impact of the Elevation Antenna Pattern Phase Compensation on the Interferometric Phase Preservation; Technical Report, ESA-EOPG-CSCOP-TN-0004; European Space Agency: Paris, France, 2015. [Google Scholar]
- Sentinel-1 Quality Control. Available online: https://qc.sentinel1.eo.esa.int (accessed on 20 December 2018).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Alsdorf, D. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, 5. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Transact. on Geoscie. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Bekaert, D.P.S.; Walters, R.J.; Wright, T.J.; Hooper, A.J.; Parker, D.J. Statistical comparison of InSAR tropospheric correction techniques. Remote Sens. Environ. 2015, 170, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Wright, T.J.; Parsons, B.E.; Zhong, L. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31, 169–178. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Hürriyet Gazetesi. Available online: http://www.hurriyet.com.tr/gundem/eber-golu-tamamen-kurudu-40991682 (accessed on 2 January 2019).
- T24 Bağımsız İnternet Gazetesi. Available online: http://t24.com.tr/haber/afyonkarahisardaki-eber-golu-tamamen-kurudu,727012 (accessed on 2 January 2019).
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Ground Water and Surface Water—A Single Resource; Circular 1139; US Geological Survey: Reston, VA, USA, 1998.
- Sophocleous, M. Interactions between groundwater and surface water: the state of the science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Ghoubachi, S.Y. Impact of lake Nasser on the groundwater of the Nubia sandstone aquifer system in Tushka area, South Western Desert, Egypt. J. King Saud Univ. Sci. 2012, 24, 101–109. [Google Scholar] [CrossRef]
- Tezcan, L.; Meriç, B.T.; Doğdu, N.; Akan, B.; Atilla, A.Ö.; Kurttaş, T. Akarçay havzası hidrojeolojisi ve yeraltısuyu akım modeli; Project Final Report; Hacettepe University International Karst Water Sources Research and Application Center (UKAM): Valencia, CA, USA, 2002; p. 13. [Google Scholar]
- The Turkish State Meteorological Service Web Site. Available online: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=AFYONKARAHISAR (accessed on 7 April 2019).
- Bluedot Water Observatory. Available online: https://water.blue-dot-observatory.com/2361 (accessed on 19 November 2018).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imamoglu, M.; Kahraman, F.; Cakir, Z.; Sanli, F.B. Ground Deformation Analysis of Bolvadin (W. Turkey) by Means of Multi-Temporal InSAR Techniques and Sentinel-1 Data. Remote Sens. 2019, 11, 1069. https://doi.org/10.3390/rs11091069
Imamoglu M, Kahraman F, Cakir Z, Sanli FB. Ground Deformation Analysis of Bolvadin (W. Turkey) by Means of Multi-Temporal InSAR Techniques and Sentinel-1 Data. Remote Sensing. 2019; 11(9):1069. https://doi.org/10.3390/rs11091069
Chicago/Turabian StyleImamoglu, Mumin, Fatih Kahraman, Ziyadin Cakir, and Fusun Balik Sanli. 2019. "Ground Deformation Analysis of Bolvadin (W. Turkey) by Means of Multi-Temporal InSAR Techniques and Sentinel-1 Data" Remote Sensing 11, no. 9: 1069. https://doi.org/10.3390/rs11091069