Development of Supraglacial Ponds in the Everest Region, Nepal, between 1989 and 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Preprocessing
2.2.1. Landsat
2.2.2. Sentinel-2
2.2.3. WorldView and GeoEye
2.2.4. Digital Elevation Model (DEM)
2.3. Methods
2.3.1. Glacier Characteristics
2.3.2. Supraglacial Pond Mapping
3. Results
3.1. Glacier Distribution and Characteristics
3.2. High-Resolution Inventory of Supraglacial Ponds in the Everest Region
3.3. Long-Term Evolution of the Ponds
3.3.1. Glacier Wise Trends of Pond Cover
3.3.2. Pond Persistency
3.4. Seasonal Pond Cover
4. Discussion
4.1. Supraglacial Pond Inventory Using Remote Sensing
4.2. Spatial, Temporal, and Seasonal Trends in Supraglacial Pond Development
4.3. Glacier Characteristics and Pond Cover
4.4. Future Development of the Lakes and Associated Risk
4.5. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Bolch, T.; Kulkarni, A.; Kaab, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The State and Fate of Himalayan Glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012. [Google Scholar] [CrossRef] [PubMed]
- Sherpa, S.F.; Wagnon, P.; Brun, F.; Berthier, E.; Vincent, C.; Lejeune, Y.; Arnaud, Y.; Kayastha, R.B.; Sinisalo, A. Contrasted surface mass balances of debris-free glaciers observed between the southern and the inner parts of the Everest region (2007–2015). J. Glaciol. 2017, 63, 637–651. [Google Scholar] [CrossRef]
- Acharya, A.; Kayastha, R.B. Mass and Energy Balance Estimation of Yala Glacier (2011–2017), Langtang Valley, Nepal. Water 2018, 11, 6. [Google Scholar] [CrossRef]
- Shea, J.M.; Immerzeel, W.W.; Wagnon, P.; Vincent, C.; Bajracharya, S. Modelling glacier change in the Everest region, Nepal Himalaya. Cryosphere 2015, 9, 1105–1128. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Liu, Q.; Liu, S. Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010. PLoS ONE 2013, 8, e83973. [Google Scholar] [CrossRef] [PubMed]
- Khadka, N.; Zhang, G.; Thakuri, S. Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017). Remote Sens. 2018, 10, 1913. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Wang, W.; Yang, W. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Glob. Planet. Chang. 2015, 131, 148–157. [Google Scholar] [CrossRef]
- Röhl, K. Characteristics and evolution of supraglacial ponds on debris-covered Tasman Glacier, New Zealand. J. Glaciol. 2008, 54, 867–880. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Arnaud, Y.; Berthier, E. Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob. Planet. Chang. 2011, 75, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Irvine-Fynn, T.D.L.; Porter, P.R.; Rowan, A.V.; Quincey, D.J.; Gibson, M.J.; Bridge, J.W.; Watson, C.S.; Hubbard, A.; Glasser, N.F. Supraglacial Ponds Regulate Runoff From Himalayan Debris-Covered Glaciers. Geophys. Res. Lett. 2017, 44, 11,894–11,904. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Buchroithner, M.F.; Peters, J.; Baessler, M.; Bajracharya, S. Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Nat. Hazards Earth Syst. Sci. 2008, 8, 1329–1340. [Google Scholar] [CrossRef] [Green Version]
- Quincey, D.J.; Luckman, A.; Benn, D. Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking. J. Glaciol. 2009, 55, 596–606. [Google Scholar] [CrossRef]
- Chand, M.B.; Kayastha, R.B. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal. Sci. Cold Arid Reg. 2018, 10, 357–368. [Google Scholar] [CrossRef]
- Watson, C.S.; Quincey, D.J.; Carrivick, J.L.; Smith, M.W. The dynamics of supraglacial ponds in the Everest region, central Himalaya. Glob. Planet. Chang. 2016, 142, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Benn, D.I.; Bolch, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L.I.; Quincey, D.; Thompson, S.; Toumi, R.; Wiseman, S. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth Sci. Rev. 2012, 114, 156–174. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.M. On the Formation of Supraglacial Lakes on Debris-Covered Glaciers. Available online: http://hydrologie.org/redbooks/a264/iahs_264_0153.pdf (accessed on 1 May 2019).
- Miles, E.S.; Willis, I.C.; Arnold, N.S.; Steiner, J.; Pellicciotti, F. Spatial, seasonal and interannual variability of supraglacial ponds in the Langtang Valley of Nepal, 1999–2013. J. Glaciol. 2017, 63, 88–105. [Google Scholar] [CrossRef]
- Sakai, A.; Takeuchi, N.; Fujita, K.; Nakawo, M. Role of Supraglacial Ponds in the Ablation Process of a Debris-Covered Glacier in the Nepal Himalayas. Available online: http://hydrologie.org/redbooks/a264/iahs_264_0119.pdf (accessed on 1 May 2019).
- Miles, E.S.; Pellicciotti, F.; Willis, I.C.; Steiner, J.F.; Buri, P.; Arnold, N.S. Refined energy-balance modelling of a supraglacial pond, Langtang Khola, Nepal. Ann. Glaciol. 2016, 57, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Miles, E.S.; Steiner, J.; Willis, I.; Buri, P.; Immerzeel, W.W.; Chesnokova, A.; Pellicciotti, F. Pond Dynamics and Supraglacial-Englacial Connectivity on Debris-Covered Lirung Glacier, Nepal. Available online: https://www.frontiersin.org/articles/10.3389/feart.2017.00069/full (accessed on 1 May 2019).
- Watson, C.S.; Quincey, D.J.; Carrivick, J.L.; Smith, M.W.; Rowan, A.V.; Richardson, R. Heterogeneous water storage and thermal regime of supraglacial ponds on debris-covered glaciers. Earth Surf. Process. Landf. 2018, 43, 229–241. [Google Scholar] [CrossRef]
- Benn, D.I.; Wiseman, S.; Hands, K.A. Growth and drainage of supraglacial lakes on debris-mantled Ngozumpa Glacier, Khumbu Himal, Nepal. J. Glaciol. 2001, 47, 626–638. [Google Scholar] [CrossRef]
- Sakai, A.; Nishimura, K.; Kadota, T.; Takeuchi, N. Onset of calving at supraglacial lakes on debris-covered glaciers of the Nepal Himalaya. J. Glaciol. 2009, 55, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Mayer, C.; Liu, S. Distribution and interannual variability of supraglacial lakes on debris-covered glaciers in the Khan Tengri-Tumor Mountains, Central Asia. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Chand, M.B.; Kayastha, R.B.; Parajuli, A.; Mool, P.K. Seasonal variation of ice melting on varying layers of debris of Lirung Glacier, Langtang Valley, Nepal. Proc. Int. Assoc. Hydrol. Sci. 2015, 368, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Sakai, A.; Fujita, K. Formation conditions of supraglacial lakes on debris-covered glaciers in the Himalaya. J. Glaciol. 2010, 56, 177–181. [Google Scholar] [CrossRef]
- Quincey, D.J.; Richardson, S.D.; Luckman, A.; Lucas, R.M.; Reynolds, J.M.; Hambrey, M.J.; Glasser, N.F. Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Glob. Planet. Chang. 2007, 56, 137–152. [Google Scholar] [CrossRef]
- Lamsal, D.; Sawagaki, T.; Watanabe, T.; Byers, A.C. Assessment of glacial lake development and prospects of outburst susceptibility: Chamlang South Glacier, eastern Nepal Himalaya. Geomat. Nat. Hazards Risk 2016, 7, 403–423. [Google Scholar] [CrossRef]
- Somos-Valenzuela, M.A.; McKinney, D.C.; Rounce, D.R.; Byers, A.C. Changes in Imja Tsho in the Mount Everest region of Nepal. Cryosphere 2014, 8, 1661–1671. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Ives, J.D.; Hammond, J.E. Rapid Growth of a Glacial Lake in Khumbu Himal, Himalaya: Prospects for a Catastrophic Flood. Mt. Res. Dev. 1994, 14, 329. [Google Scholar] [CrossRef]
- Watanabe, T.; Lamsal, D.; Ives, J.D. Evaluating the growth characteristics of a glacial lake and its degree of danger of outburst flooding: Imja Glacier, Khumbu Himal, Nepal. Nor. Geogr. Tidsskr. 2009, 63, 255–267. [Google Scholar] [CrossRef]
- Byers, A.C.; McKinney, D.C.; Somos-Valenzuela, M.; Watanabe, T.; Lamsal, D. Glacial lakes of the Hinku and Hongu valleys, Makalu Barun National Park and Buffer Zone, Nepal. Nat. Hazards 2013, 69, 115–139. [Google Scholar] [CrossRef]
- Fujita, K.; Sakai, A.; Nuimura, T.; Yamaguchi, S.; Sharma, R.R. Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery. Environ. Res. Lett. 2009, 4, 045205. [Google Scholar] [CrossRef]
- Rounce, D.R.; McKinney, D.C.; Lala, J.M.; Byers, A.C.; Watson, C.S. A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya. Hydrol. Earth Syst. Sci. 2016, 20, 3455–3475. [Google Scholar] [CrossRef]
- Aggarwal, A.; Jain, S.K.; Lohani, A.K.; Jain, N. Glacial lake outburst flood risk assessment using combined approaches of remote sensing, GIS and dam break modelling. Geomat. Nat. Hazards Risk 2016, 7, 18–36. [Google Scholar] [CrossRef]
- Singh, R.B.; Schickhoff, U.; Mal, S. Climate change, glacier response, and vegetation dynamics in the Himalaya: Contributions toward future earth initiatives. In Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya; Springer International Publishing: New York, NY, USA, 2016; pp. 1–399. [Google Scholar]
- Watanabe, T.; Byers, A.C.; Somos-Valenzuela, M.A.; McKinney, D.C. The Need for Community Involvement in Glacial Lake Field Research: The Case of Imja Glacial Lake, Khumbu, Nepal Himalaya. In Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya; Springer International Publishing: New York, NY, USA, 2016; pp. 235–250. [Google Scholar]
- Shrestha, F.; Gao, X.; Khanal, N.R.; Maharjan, S.B.; Shrestha, R.B.; Wu, L.; Mool, P.K.; Bajracharya, S.R. Decadal glacial lake changes in the Koshi basin, central Himalaya, from 1977 to 2010, derived from Landsat satellite images. J. Mt. Sci. 2017, 14, 1969–1984. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Mool, P. Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Ann. Glaciol. 2009, 50, 81–86. [Google Scholar] [CrossRef]
- Thompson, S.S.; Benn, D.I.; Dennis, K.; Luckman, A. A rapidly growing moraine-dammed glacial lake on Ngozumpa Glacier, Nepal. Geomorphology 2012, 145, 1–11. [Google Scholar] [CrossRef]
- Benn, D.I.; Wiseman, S.; Warren, C.R. Rapid Growth of a Supraglacial Lake, Ngozumpa Glacier, Khumbu Himal, Nepal. Available online: http://hydrologie.org/redbooks/a264/iahs_264_0177.pdf (accessed on 1 May 2019).
- Salerno, F.; Thakuri, S.; D’Agata, C.; Smiraglia, C.; Manfredi, E.C.; Viviano, G.; Tartari, G. Glacial lake distribution in the Mount Everest region: Uncertainty of measurement and conditions of formation. Glob. Planet. Chang. 2012, 92, 30–39. [Google Scholar] [CrossRef]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65–66, 31–47. [Google Scholar] [CrossRef]
- Bajracharya, S.; Maharjan, S.; Shrestha, F.; Bajracharya, O.; Baidya, S. Glacier Status in Nepal and Decadal Change from 1980 to 2010 Based on Landsat Data; International Centre for Integrated Mountain Development: Patan, Nepal, 2014. [Google Scholar]
- Rounce, D.R.; Byers, A.C.; Byers, E.A.; Mckinney, D.C. Brief Communications: Observations of a Glacier Outburst Flood from Lhotse Glacier, Everest Area, Nepal. Cryosphere 2016, 11, 443–449. [Google Scholar] [CrossRef]
- Miles, E.S.; Watson, C.S.; Brun, F.; Berthier, E.; Esteves, M.; Quincey, D.J.; Miles, K.E.; Hubbard, B.; Wagnon, P. Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest region, Nepal Himalaya. Cryosphere 2018, 12, 3891–3905. [Google Scholar] [CrossRef]
- Jiang, S.; Nie, Y.; Liu, Q.; Wang, J.; Liu, L.; Hassan, J.; Liu, X.; Xu, X. Glacier Change, Supraglacial Debris Expansion and Glacial Lake Evolution in the Gyirong River Basin, Central Himalayas, between 1988 and 2015. Remote Sens. 2018, 10, 986. [Google Scholar] [CrossRef]
- Shean, D. High Mountain Asia 8-Meter Dems Derived from Along-Track Optical Imagery; Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA.
- King, O.; Quincey, D.J.; Carrivick, J.L.; Rowan, A.V. Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015. Cryosphere 2017, 11, 407–426. [Google Scholar] [CrossRef]
- Huggel, C.; Kääb, A.; Haeberli, W.; Teysseire, P.; Paul, F. Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Can. Geotech. J. 2002, 39, 316–330. [Google Scholar] [CrossRef]
- Shukla, A.; Garg, P.K.; Srivastava, S. Evolution of Glacial and High-Altitude Lakes in the Sikkim, Eastern Himalaya Over the Past Four Decades (1975–2017). Front. Environ. Sci. 2018, 6, 81. [Google Scholar] [CrossRef]
- Mergili, M.; Müller, J.P.; Schneider, J.F. Spatio-temporal development of high-mountain lakes in the headwaters of the Amu Darya River (Central Asia). Glob. Planet. Chang. 2013, 107, 13–24. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Jha, L.K.; Khare, D. Detection and delineation of glacial lakes and identification of potentially dangerous lakes of Dhauliganga basin in the Himalaya by remote sensing techniques. Nat. Hazards 2017, 85, 301–327. [Google Scholar] [CrossRef]
- Bolch, T.; Peters, J.; Yegorov, A.; Pradhan, B.; Buchroithner, M.; Blagoveshchensky, V. Identification of potentially dangerous glacial lakes in the northern Tien Shan. Nat. Hazards 2011, 59, 1691–1714. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Sakai, A. Glacial Lakes in the Himalayas: A Review on Formation and Expansion Processes. Glob. Environ. Res. 2012, 16, 23–30. [Google Scholar]
- Zhang, Y.; Fujita, K.; Liu, S.; Liu, Q.; Nuimura, T. Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery. J. Glaciol. 2011, 57, 1147–1157. [Google Scholar] [CrossRef]
- Fujita, K.; Sakai, A.; Takenaka, S.; Nuimura, T.; Surazakov, A.B.; Sawagaki, T.; Yamanokuchi, T. Potential flood volume of Himalayan glacial lakes. Nat. Hazards Earth Syst. Sci. 2013, 13, 1827–1839. [Google Scholar] [CrossRef]
- Cook, S.J.; Quincey, D.J. Estimating the volume of Alpine glacial lakes. Earth Surf. Dynam 2015, 3, 559–575. [Google Scholar] [CrossRef]
- Wessels, R.L.; Kargel, J.S.; Kieffer, H.H. ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya. Ann. Glaciol. 2002, 34, 399–408. [Google Scholar] [CrossRef]
- Sakai, A.; Nakawo, M.; Fujita, K. Melt rate of ice cliffs on the Lirung Glacier, Nepal Himalayas, 1996. Bull. Glacier Res. 1998, 16, 57–66. [Google Scholar]
- APHRODITE’s Water Resources. Available online: http://aphrodite.st.hirosaki-u.ac.jp/ (accessed on 25 February 2019).
- Li, Z.; Fan, K.; Tian, L.; Shi, B.; Zhang, S.; Zhang, J. Response of Glacier and Lake Dynamics in Four Inland Basins to Climate Change at the Transition Zone between the Karakorum And Himalayas. PLoS ONE 2015, 10, e0144696. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Eriksson, M.; Mool, P.; Ghimire, P.; Mishra, B.; Khanal, N.R. Glacial lake outburst flood risk assessment of Sun Koshi basin, Nepal. Geomat. Nat. Hazards Risk 2010, 1, 157–169. [Google Scholar] [CrossRef] [Green Version]
- King, O.; Dehecq, A.; Quincey, D.; Carrivick, J. Contrasting geometric and dynamic evolution of lake and land-terminating glaciers in the central Himalaya. Glob. Planet. Chang. 2018, 167, 46–60. [Google Scholar] [CrossRef] [Green Version]
- Carrivick, J.L.; Tweed, F.S. A global assessment of the societal impacts of glacier outburst floods. Glob. Planet. Chang. 2016, 144, 1–16. [Google Scholar] [CrossRef] [Green Version]
- ICIMOD. Glacial Lakes and Glacial Lake Outburst Floods in Nepal; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2011. [Google Scholar]
- Byers, A.C.; Rounce, D.R.; Shugar, D.H.; Lala, J.M.; Byers, E.A.; Regmi, D. A rockfall-induced glacial lake outburst flood, Upper Barun Valley, Nepal. Landslides 2019, 16, 533–549. [Google Scholar] [CrossRef]
- Cook, K.L.; Andermann, C.; Gimbert, F.; Adhikari, B.R.; Hovius, N. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science 2018, 362, 53–57. [Google Scholar] [CrossRef] [PubMed]
Glacier | Area (km2) | Width (m) | DGM (m) | Elevation1 (m a.s.l.) | Slope (°) | AAR (%) | Aspect | Pond/Lake Cover (%) | ||
---|---|---|---|---|---|---|---|---|---|---|
Clean + Debris | Debris (%) | Min. | Mean | |||||||
Landak | 1.6 | 1.0 (60) | 312 | 41 | 4857 | 5030 | 12.0 | 30 | SE | 0.21 |
Chhule | 4.9 | 3.4 (69) | 408 | 22 | 4794 | 4980 | 10.5 | 14 | SE | 1.67 |
Melung | 7.2 | 6.3 (88) | 443 | 58 | 4967 | 5184 | 9.7 | 11 | SE | 0.69 |
Bhote Koshi | 30.3 | 17.9 (59) | 510 | 63 | 4756 | 5104 | 9.6 | 38 | S | 1.55 |
Lumsamba | 10.9 | 5.1 (47) | 463 | 61 | 4900 | 5166 | 6.8 | 45 | S | 2.98 |
Ngozompa | 77.7 | 26.0 (33) | 904 | 75 | 4669 | 5022 | 7.0 | 57 | S | 2.33 |
Changri Nup | 12.3 | 7.4 (60) | 923 | 98 | 5094 | 5257 | 9.6 | 38 | SE | 3.11 |
Nuptse | 5.3 | 3.3 (63) | 419 | 49 | 4938 | 5237 | 9.2 | 44 | S | 1.22 |
Lhotse Nup | 2.3 | 1.6 (69) | 297 | 39 | 4930 | 5075 | 8.9 | 18 | SW | 1.53 |
Lhotse | 10.5 | 5.9 (56) | 740 | 42 | 4813 | 5051 | 7.1 | 33 | SW | 1.54 |
Amphu | 2.2 | 1.3 (60) | 380 | 113 | 5021 | 5166 | 14.5 | 12 | SW | 0.65 |
Imja | 15.3 | 5.5 (36) | 718 | 129 | 4980 | 5145 | 8.7 | 53 | SW | 0.52 |
Ama Dablam | 7.7 | 2.4 (31) | 441 | 63 | 4753 | 4911 | 8.8 | 37 | S | 2.06 |
Duwo | 1.5 | 1.2 (81) | 616 | 57 | 4714 | 4809 | 13.4 | 1 | SW | 1.30 |
Lobuche | 1.4 | 0.6 (44) | 364 | 44 | 4943 | 5018 | 15.8 | 48 | SE | 3.24 |
Cholotse | 1.2 | 0.8 (72) | 344 | 70 | 4859 | 4967 | 13.2 | 21 | SW | 0.81 |
Tweche | 0.3 | 0.3 (100) | 268 | 64 | 4967 | 5035 | 13.7 | 0 | SW | 1.62 |
Cholo | 1.0 | 1.0 (95) | 253 | 39 | 4427 | 4732 | 16.5 | 5 | E | 0.06 |
Nareyargaip | 5.4 | 2.1 (39) | 375 | 107 | 5042 | 5268 | 15.5 | 61 | S | 2.17 |
Nare | 1.6 | 0.7 (42) | 526 | 108 | 4983 | 5112 | 12.5 | 24 | S | 0.17 |
Thyanbo2 | 2.2 | 1.4 (62) | 206 | 15 | 4347 | 4653 | 13.9 | 26 | E | |
Tingbo | 0.9 | 0.5 (56) | 235 | 26 | 4855 | 5051 | 20.3 | 19 | SW | 0.03 |
Khumbu | 27.2 | 8.0 (30) | 568 | 70 | 4885 | 5132 | 7.7 | 66 | SW | 3.89 |
rs | 0.90 | 0.90 | 0.70 | 0.21 | −0.11 | 0.72 | −0.75 | 0.61 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chand, M.B.; Watanabe, T. Development of Supraglacial Ponds in the Everest Region, Nepal, between 1989 and 2018. Remote Sens. 2019, 11, 1058. https://doi.org/10.3390/rs11091058
Chand MB, Watanabe T. Development of Supraglacial Ponds in the Everest Region, Nepal, between 1989 and 2018. Remote Sensing. 2019; 11(9):1058. https://doi.org/10.3390/rs11091058
Chicago/Turabian StyleChand, Mohan Bahadur, and Teiji Watanabe. 2019. "Development of Supraglacial Ponds in the Everest Region, Nepal, between 1989 and 2018" Remote Sensing 11, no. 9: 1058. https://doi.org/10.3390/rs11091058