Spatial and Temporal Variability of Open-Ocean Barrier Islands along the Indus Delta Region
Abstract
:1. Introduction
1.1. Background of the Study
1.2. Purpose of the Study
2. Study Area
3. Methodology
3.1. Satellite Data
3.2. Tidal Data
3.3. Satellite Data Selection Criteria
3.4. Barrier Island Identification and Extraction
3.5. Pixel by Pixel Frequency of Barrier Island
4. Results
4.1. Boundary Delineation of Barrier Islands
4.2. Sustainability of Barrier Islands
4.3. Change in Area of Barrier Islands
4.4. Translocation of Barrier Islands
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sr. # | Satellite | Sensor | Scene Identifier | Path/Row | Acquisition Date |
---|---|---|---|---|---|
1 | Landsat-7 | ETM+ | LE07_L1TP_152043_20170219_20170317_01_T1 | 152/43b | 19 Feb 2017 |
2 | Landsat-8 | OLI | LC08_L1TP_152043_20160413_20170326_01_T1 | 152/43b | 13 Apr 2016 |
3 | Landsat-7 | ETM+ | LE07_L1TP_152043_20140126_20161119_01_T1 | 152/43b | 26 Jan 2014 |
4 | Landsat-5 | TM | LT05_L1TP_152043_20110211_20161010_01_T1 | 152/43b | 11 Feb 2011 |
5 | Landsat-7 | ETM+ | LE07_L1TP_152043_20090418_20161222_01_T1 | 152/43b | 18 Apr 2009 |
6 | Landsat-7 | ETM+ | LE07_L1TP_152043_20080314_20161230_01_T1 | 152/43b | 14 Mar 2008 |
7 | Landsat-7 | ETM+ | LE07_L1TP_152043_20070224_20170104_01_T1 | 152/43b | 24 Feb 2007 |
8 | Landsat-7 | ETM+ | LE07_L1TP_152043_20021211_20170127_01_T1 | 152/43b | 11 Dec 2002 |
9 | Landsat-5 | TM | LT05_L1TP_152043_19900217_20170131_01_T1 | 152/43b | 17 Feb 1990 |
10 | Landsat-2 | MSS | LM02_L1TP_163043_19761214_20180425_01_T2 | 163/43a | 14 Dec 1976 |
References
- Emanuel, K.A. The dependence of hurricane intensity on climate. Nature 1987, 326, 483–485. [Google Scholar] [CrossRef]
- Knutson, T.R.; Tuleya, R.E. Impact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization. J. Clim. 2004, 17, 3477–3495. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Webster, P.J.; Holland, G.J.; Curry, J.A.; Chang, H.R. Atmospheric science: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 2005, 309, 1844–1846. [Google Scholar] [CrossRef] [PubMed]
- Mimura, N.; Nurse, L.; McLean, R.F.; Agard, J.; Briguglio, L.; Lefale, P.; Payet, R.; Sem, G. Small islands. In Climate Change 2007: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 687–716. [Google Scholar]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Romine, B.M.; Fletcher, C.H.; Frazer, L.N.; Genz, A.S.; Barbee, M.M.; Lim, S.-C. Historical Shoreline Change, Southeast Oahu, Hawaii; Applying Polynomial Models to Calculate Shoreline Change Rates. J. Coast. Res. 2009, 256, 1236–1253. [Google Scholar] [CrossRef]
- Shahzad, M.I.; Meraj, M.; Nazeer, M.; Zia, I.; Inam, A.; Mehmood, K.; Zafar, H. Empirical estimation of suspended solids concentration in the Indus Delta Region using Landsat-7 ETM+ imagery. J. Environ. Manag. 2018, 209, 254–261. [Google Scholar] [CrossRef]
- Chu, Z.X.; Sun, X.G.; Zhai, S.K.; Xu, K.H. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images. Mar. Geol. 2006, 227, 13–30. [Google Scholar] [CrossRef]
- Mills, J.P.; Buckley, S.J.; Mitchell, H.L.; Clarke, P.J.; Edwards, S.J. A geomatics data integration technique for coastal change monitoring. Earth Surf. Process. Landforms 2005, 30, 651–664. [Google Scholar] [CrossRef]
- Marfai, M.A.; Almohammad, H.; Dey, S.; Susanto, B.; King, L. Coastal dynamic and shoreline mapping: Multi-sources spatial data analysis in Semarang Indonesia. Environ. Monit. Assess. 2008, 142, 297–308. [Google Scholar] [CrossRef]
- Ryabchuk, D.; Leont’yev, I.; Sergeev, A.; Nesterova, E.; Sukhacheva, L.; Zhamoida, V. The morphology of sand spits and the genesis of longshore sand waves on the coast of the eastern Gulf of Finland. Baltica 2011, 24, 13–24. [Google Scholar]
- Mujabar, P.S.; Chandrasekar, N. Shoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GIS. Arab. J. Geosci. 2013, 6, 647–664. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Qiu, Q.; Natawidjaja, D.H.; Sieh, K. Tsunami-induced coastal change: Scenario studies for Painan, West Sumatra, Indonesia. Earth Planets Sp. 2012, 64, 799–816. [Google Scholar] [CrossRef]
- Morton, R.A.; Sallenger, A.H., Jr. Morphological Impacts of Extreme Storms on Sandy Beaches and Barriers. J. Coast. Res. 2003, 19, 560–573. [Google Scholar] [CrossRef]
- Forbes, D.L.; Parkes, G.S.; Manson, G.K.; Ketch, L.A. Storms and shoreline retreat in the southern Gulf of St. Lawrence. Mar. Geol. 2004, 210, 169–204. [Google Scholar] [CrossRef]
- Hapke, C.J.; Himmelstoss, E.A.; Kratzmann, M.G.; List, J.H.; Thieler, E.R. National Assessment of Shoreline Change: Historical Shoreline Change along the New England and Mid-Atlantic Coasts; U.S. Geological Survey Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2010; 57p.
- Slott, J.M.; Murray, A.B.; Ashton, A.D. Large-scale responses of complex-shaped coastlines to local shoreline stabilization and climate change. J. Geophys. Res. Atmos. 2010, 115, 1–19. [Google Scholar] [CrossRef]
- Hapke, C.J.; Plant, N.G.; Henderson, R.E.; Schwab, W.C.; Nelson, T.R. Decoupling processes and scales of shoreline morphodynamics. Mar. Geol. 2016, 381, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Trujillo, A.P.; Harold, V. Thurman Essentials of Oceanography, 12th ed.; Pearson: Dallas, TX, USA, 2016; ISBN 9780134073545. [Google Scholar]
- Pinet, P.R. Invitation to Oceanography; Jones & Bartlett: Boston, MA, USA, 2009; ISBN 1449667988. [Google Scholar]
- Godfrey, P.J. Barrier beaches of the east coast. Oceanus 1976, 19, 27–40. [Google Scholar]
- Stutz, M.L.; Pilkey, O.H. Open-ocean barrier islands: Global influence of climatic, oceanographic, and depositional settings. J. Coast. Res. 2011, 27, 207–222. [Google Scholar] [CrossRef]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Greening, H.; Doering, P.; Corbett, C. Hurricane impacts on coastal ecosystems. Estuar. Coasts 2006, 29, 877–879. [Google Scholar] [CrossRef]
- Mallin, M.; Corbett, C. How hurricane attributes determine the extent of environmental effects: Multiple hurricanes and different coastal systems. Estuar. Coasts 2006, 29, 1046–1061. [Google Scholar] [CrossRef]
- Sallenger, A.H.; Stockdon, H.F.; Fauver, L.; Hansen, M.; Thompson, D.; Wright, C.W.; Lillycrop, J. Hurricanes 2004: An overview of their characteristics and coastal change. Estuari. Coasts 2006, 29, 880–888. [Google Scholar] [CrossRef]
- Lippitt, C.D.; Zhang, S. The impact of small unmanned airborne platforms on passive optical remote sensing: A conceptual perspective. Int. J. Remote Sens. 2018, 39, 4852–4868. [Google Scholar] [CrossRef]
- Martínez, M.L.; Intralawan, A.; Vázquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The coasts of our world: Ecological, economic and social importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Rabbani, M.M.; Inam, A.; Tabrez, A.R.; Sayed, N.A.; Tabrez, S.M. The impact of sea level rise on Pakistan’s coastal zones—In a climate change scenario. In Proceedings of the 2nd International Maritime Conference, Karachi, Pakistan, 25–27 March 2008. [Google Scholar]
- Ali Khan, T.M.; Razzaq, D.A.; Chaudhry, Q.U.Z.; Quadir, D.A.; Kabir, A.; Sarker, M.A. Sea level variations and geomorphological changes in the coastal belt of Pakistan. Mar. Geod. 2002, 25, 159–174. [Google Scholar] [CrossRef]
- Rasul, G.; Mahmood, A.; Sadiq, A.; Khan, S.I. Vulnerability of the Indus Delta to Climate Change in Pakistan. Pak. J. Meteorol. 2012, 8, 89–107. [Google Scholar]
- Rizvi, S.H.; Ali, A.; Naeem, S.A.; Tahir, M.; Baquer, J.; Saleem, M.; Tabrez, S.M. Comparison of the physical properties of seawater offshore the Karachi coast between the northeast and southwest monsoons. In International Conference of American Institute of Biological Sciences; M. Thompson, N.M.T., Ed.; Marine Science of the Arabian Sea: Washington, DC, USA, 1988. [Google Scholar]
- Siddiqui, M.N.; Maajid, S. Monitoring of geomorphological changes for planning reclamation work in coastal area of Karachi, Pakistan. Adv. Sp. Res. 2004, 33, 1200–1205. [Google Scholar] [CrossRef]
- Giosan, L.; Constantinescu, S.; Clift, P.D.; Tabrez, A.R.; Danish, M.; Inam, A. Recent morphodynamics of the Indus delta shore and shelf. Cont. Shelf Res. 2006, 26, 1668–1684. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Giosan, L.; Brakenridge, G.R.; Hannon, M.; Bilham, R. Anthropocene metamorphosis of the Indus Delta and lower floodplain. Anthropocene 2013, 3, 24–35. [Google Scholar] [CrossRef]
- Inam, A.; Clift, P.D.; Giosan, L.; Tabrez, A.R.; Tahir, M.; Rabbani, M.M.; Danish, M. The Geographic, Geological and Oceanographic Setting of the Indus River. In Large Rivers: Geomorphology and Management; John Wiley & Sons Ltd: Chichester, England, 2008; pp. 333–346. ISBN 9780470849873. [Google Scholar]
- Wells, J.T.; Coleman, J.M. Deltaic morphology and sedimentology, with special reference to the Indus River Delta. Mar. Geol. Oceanogr. Arab. Sea Coast. Pak. 1985, 424, 85–100. [Google Scholar]
- Chandio, N.H.; Anwar, M.M.; Chandio, A.A. Degradation of Indus delta, Removal mangroves forestland Its Causes: A Case study of Indus River delta. Sindh Univ. Res. J.Sci. Ser. 2011, 43, 67–72. [Google Scholar]
- Zia, I.; Zafar, H.; Shahzad, M.I.; Meraj, M.; Kazmi, J.H. Assessment of sea water inundation along Daboo creek area in Indus Delta Region, Pakistan. J. Ocean Univ. China 2017, 16, 1055–1060. [Google Scholar] [CrossRef]
- Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 2015, 517, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Bindoff, N.L.; Willebrand, J.; Artale, V.; Cazenave, A.; Gregory, J.M.; Gulev, S.; Hanawa, K.; Le Quere, C.; Levitus, S.; Nojiri, Y.; et al. Observations: Oceanic climate change and sea level. Changes 2007, AR4, 385–432. [Google Scholar]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.; Nunn, P.D.; et al. Sea level change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1137–1216. [Google Scholar]
- Madurapperuma, B.D.; Dellysse, J.E.; Iyoob, A.L.; Resources, W.; Secretariat, D.; Lanka, S. Mapping shoreline vulnerabilities using kite aerial photographs at Oluvil harbour in Ampara. In Proceedings of the 7th International Symposium, Oluvil, Sri Lanka, 7–8 December 2017; pp. 197–204. [Google Scholar]
- Kundu, S.; Mondal, A.; Khare, D.; Mishra, P.K.; Shukla, R. Shifting shoreline of Sagar Island Delta, India. J. Maps 2014, 10, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Matias, A.; Carrasco, A.R.; Loureiro, C.; Almeida, S.; Ferreira, Ó. Nearshore and foreshore influence on overwash of a barrier island. J. Coast. Res. 2014, 70, 675–680. [Google Scholar] [CrossRef]
- Morton, R.A. Historical Changes in the Mississippi-Alabama Barrier-Island Chain and the Roles of Extreme Storms, Sea Level, and Human Activities. J. Coast. Res. 2008, 246, 1587–1600. [Google Scholar] [CrossRef]
- Moore, L.J.; List, J.H.; Williams, S.J.; Stolper, D. Modelling barrier island response to sea-level rise in the outer banks, North Carolina. In Proceedings of the Sixth International Symposium on Coastal Engineering and Science of Coastal Sediment Process, New Orleans, LA, USA, 13–17 May 2007; pp. 1153–1164. [Google Scholar]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, D.; Sesli, F.A. Shoreline change analysis of the Kizilirmak Lagoon Series. Ocean Coast. Manag. 2015, 118, 290–308. [Google Scholar] [CrossRef]
- Nazeer, M.; Nichol, J.E.; Yung, Y.K. Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment. Int. J. Remote Sens. 2014, 35, 6271–6291. [Google Scholar] [CrossRef]
- Oertel, G.F. The barrier island system. Marine Geolog. 1985, 63, 1–18. [Google Scholar] [CrossRef]
- Armenakis, C.; Leduc, F.; Cyr, I.; Savopol, F.; Cavayas, F. A comparative analysis of scanned maps and imagery for mapping applications. ISPRS J. Photogramm. Remote Sens. 2003, 57, 304–314. [Google Scholar] [CrossRef]
- Guy, B.K.K.; Jewell, S. Barrier Island Shorelines Extracted from Landsat Imagery; U.S. Geological Survey: Reston, VA, USA, 2015.
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A landsat surface reflectance dataset for North America, 1990-2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- U.S. Geological Survery. Landsat 4-7 Surface reflectance (LEDAPS) product guide (version 1.0); 2018. Available online: https://landsat.usgs.gov/sites/default/files/documents/ledaps_product_guide.pdf (accessed on 19 February 2019).
- U.S. Geological Survery. Landsat 8 Surface Reflectance Code (LaSRC) product guide (version 1.0); 2018. Available online: https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf (accessed on 19 February 2019).
- Chávez, P.S.J. Image-based atmospheric corrections - revisited and improved. Photogramm. Eng. Remote Sensing 1996, 62, 1025–1036. [Google Scholar] [CrossRef]
- Mahiny, A.; Turner, B. A comparison of four common atmospheric correction methods. Photogramm. Eng. Remote Sens. 2007, 73, 361–368. [Google Scholar] [CrossRef]
Area Change (%) During Period | Sum | Net Change (%) in | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BI# | 1976–1990 | 1990–2002 | 2002–2007 | 2007–2008 | 2008–2009 | 2009–2011 | 2011–2014 | 2014–2016 | 2016–2017 | Area | Perimeter | |
1 | 3 | −11 | −79 | 541 | −30 | 1 | 47 | −35 | −9 | 429 | −22 | −17 |
2 | 20 | −26 | −1 | 42 | −40 | 52 | 13 | −25 | −1 | 34 | −5 | −3 |
3 | 33 | −7 | −3 | −15 | 43 | 0 | 7 | −11 | 1 | 48 | 40 | 4 |
4 | 49 | 6 | 5 | 5 | 2 | 8 | −1 | −9 | 0 | 64 | 71 | −1 |
5 | −49 | 63 | −64 | 29 | 119 | −48 | 1 | −52 | 82 | 82 | −61 | 6 |
6 | 18 | 170 | −76 | 84 | 328 | −68 | 71 | −74 | 76 | 528 | 46 | 63 |
7 | −5 | 149 | −50 | 114 | 175 | −67 | 54 | −50 | 33 | 354 | 134 | 142 |
8 | −39 | 292 | −72 | 52 | 146 | −64 | 56 | −39 | 49 | 382 | 30 | 5 |
9 | −27 | 7 | −31 | −2 | 54 | −48 | −27 | −45 | 83 | −37 | −69 | 8 |
10 | 101 | 79 | −65 | 8 | 127 | −48 | 14 | −47 | 92 | 260 | 82 | 49 |
11 | −46 | 243 | −84 | 13 | 378 | −75 | −13 | −47 | 235 | 604 | −37 | 57 |
12 | −54 | 308 | −55 | 16 | 97 | −48 | 5 | −55 | 63 | 276 | −24 | 54 |
13 | −12 | 37 | −39 | 19 | 97 | −47 | 7 | −30 | 10 | 42 | −25 | −9 |
14 | - | 55 | −66 | 53 | 148 | −48 | −8 | −49 | 62 | 147 | −22 | 44 |
15 | - | 113 | −55 | 40 | 118 | −39 | 4 | −45 | 36 | 172 | 40 | 39 |
16 | - | 183 | −71 | 40 | 255 | −62 | 73 | −64 | 113 | 467 | 106 | 87 |
17 | - | 195 | −82 | 76 | 296 | −47 | −6 | −55 | 138 | 514 | 98 | 63 |
18 | - | −15 | −45 | 4 | 275 | −56 | 27 | −64 | 243 | 370 | 28 | 59 |
Sum | −6 | 1841 | −933 | 1120 | 2588 | −706 | 323 | −797 | 1306 |
BI# | Net Translocation | Translocation Rate | V | PV | PS | S | Movement | Fate |
---|---|---|---|---|---|---|---|---|
(km) | (m/year) | (%) | (%) | (%) | (%) | |||
1&2 | 0.06 | 1.30 | 22 | 15 | 20 | 43 | − | |
3&4 | 0.05 | 1.20 | 11 | 17 | 26 | 46 | ↑ | + |
5 | 1.56 | 38.05 | 36 | 39 | 19 | 6 | ↑ | − |
6 | 0.20 | 4.88 | 41 | 39 | 20 | 0 | ↑ | + |
7 | 1.15 | 28.05 | 47 | 38 | 15 | 0 | ↑ | + |
8 | 0.51 | 12.34 | 36 | 52 | 12 | 0 | ↑ | + |
9 | 1.55 | 37.80 | 21 | 35 | 39 | 5 | ↑ | − |
10 | 0.50 | 12.20 | 29 | 42 | 20 | 9 | ↓ | + |
11 | 0.80 | 19.51 | 23 | 59 | 17 | 1 | − | |
12 | 0.50 | 12.20 | 22 | 40 | 30 | 8 | − | |
13 | 0.50 | 12.20 | 42 | 35 | 19 | 4 | ↑ | − |
14 | 0.40 | 14.81 | 40 | 39 | 21 | 0 | ↑ | − |
15 | 0.80 | 29.63 | 55 | 37 | 8 | 0 | ↑ | + |
16 | 1.10 | 40.73 | 68 | 32 | 0 | 0 | ↑ | + |
17 | 0.90 | 33.33 | 62 | 32 | 6 | 0 | + | |
18 | 1.40 | 51.85 | 57 | 35 | 7 | 1 | + |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waqas, M.; Nazeer, M.; Shahzad, M.I.; Zia, I. Spatial and Temporal Variability of Open-Ocean Barrier Islands along the Indus Delta Region. Remote Sens. 2019, 11, 437. https://doi.org/10.3390/rs11040437
Waqas M, Nazeer M, Shahzad MI, Zia I. Spatial and Temporal Variability of Open-Ocean Barrier Islands along the Indus Delta Region. Remote Sensing. 2019; 11(4):437. https://doi.org/10.3390/rs11040437
Chicago/Turabian StyleWaqas, Muhammad, Majid Nazeer, Muhammad Imran Shahzad, and Ibrahim Zia. 2019. "Spatial and Temporal Variability of Open-Ocean Barrier Islands along the Indus Delta Region" Remote Sensing 11, no. 4: 437. https://doi.org/10.3390/rs11040437