Unsupervised Deep Noise Modeling for Hyperspectral Image Change Detection
Abstract
:1. Introduction
- (1)
- A new FCN-based deep network architecture is designed to learn powerful features for the task of change detection. The proposed architecture works in an end-to-end manner, which minimizes the final change detection cost function to avoid error accumulation.
- (2)
- An unsupervised noise modeling module is introduced for the robust training of the proposed deep network in the task of HSI change detection. By excluding the noise in an unsupervised way, the performance is improved effectively.
- (3)
- Extensive experimental results on three datasets demonstrate the proposed method’s superior performance. It not only achieves a better performance than common unsupervised approaches, but is also competitive with some supervised approaches.
2. Methodology
2.1. FCN-Based Feature Learning Module
2.2. Two-Stream Feature Fusion Module
2.3. Unsupervised Noise Modeling Module
2.4. End-to-End Training
3. Experiments
3.1. Datasets
- (1)
- Farmland: This data set covers an area of farmland in the city of Yancheng, Jiangsu province, China, composed of pixels. The two HSIs were taken on 3 May 2006 shown in Figure 5a and 23 April 2007 shown in Figure 5b. After removing the noise and water absorption bands, there are 155 spectral bands used for change detection in the experiments. Additionally, the major change is the size of farmland on this dataset.
- (2)
- Countryside: It covers an area of countryside in the city of Nantong, Jiangsu province, China, shown in Figure 5c,d. The two HSIs were acquired on 3 November 2007 and 28 November 2008, respectively. There are 166 bands used after discarding some noisy bands, and the size of each band is pixels. Visually, the size of rural areas is the main change in this dataset.
- (3)
- Poyang lake: The two HSIs covers the province of Jiangxi, China, obtained on 27 July 2002 and 16 July 2004, respectively. This dataset has a size of and is illustrated in Figure 5e,f. There are 158 spectral bands after noise elimination. In addition, the land change is approximately the major change.
3.2. Experimental Details
3.2.1. Evaluation Measures
3.2.2. Parameter Setup
3.3. Comparison Results
3.3.1. Farmland Dataset
3.3.2. Countryside Dataset
3.3.3. Poyang Lake Dataset
3.3.4. Ablation Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Comparison of Airborne Hyperspectral Data and EO-1 Hyperion for Mineral Mapping. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1388–1400. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Tao, D.; Huang, X.; Du, B. Hyperspectral Remote Sensing Image Subpixel Target Detection Based on Supervised Metric Learning. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4955–4965. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, K.; Wang, P.; Madani, K.; Sabourin, C. Unsupervised Band Selection Using Block-Diagonal Sparsity for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2062–2066. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, J.; Qi, W. Dual-Clustering-Based Hyperspectral Band Selection by Contextual Analysis. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1431–1445. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, X. Optimal Clustering Framework for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5910–5922. [Google Scholar] [CrossRef]
- Yuan, Y.; Ma, D.; Wang, Q. Hyperspectral Anomaly Detection by Graph Pixel Selection. IEEE Trans. Cybern. 2015, 46, 3123–3134. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Peng, Y.; Wang, S.; Phw, L. An Unsupervised Deep Hyperspectral Anomaly Detector. Sensors 2018, 18, 693. [Google Scholar] [CrossRef]
- Zhu, L.; Wen, G. Hyperspectral Anomaly Detection via Background Estimation and Adaptive Weighted Sparse Representation. Remote Sens. 2018, 10, 272. [Google Scholar] [Green Version]
- Wang, Q.; Lin, J.; Yuan, Y. Salient Band Selection for Hyperspectral Image Classification via Manifold Ranking. IEEE Trans. Neural Netw. Learn. Syst. 2017, 27, 1279–1289. [Google Scholar] [CrossRef]
- Wang, Q.; He, X.; Li, X. Locality and Structure Regularized Low Rank Representation for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Aptoula, E.; Mura, M.D.; Lefèvre, S. Vector Attribute Profiles for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3208–3220. [Google Scholar] [CrossRef]
- Uezato, T.; Fauvel, M.; Dobigeon, N. Hyperspectral unmixing with spectral variability using adaptive bundles and double sparsity. arXiv, 2018; arXiv:1804.11132. [Google Scholar]
- Aggarwal, H.K.; Majumdar, A. Hyperspectral Unmixing in the Presence of Mixed Noise Using Joint-Sparsity and Total Variation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4257–4266. [Google Scholar] [CrossRef]
- Bioucasdias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Liu, Y.; Cheng, J.; Song, R.; Peng, H.; Chen, Q.; Chen, X. Hyperspectral Unmixing with Bandwise Generalized Bilinear Model. Remote Sens. 2018, 10, 1600. [Google Scholar] [CrossRef]
- Eismann, M.T.; Meola, J.; Hardie, R.C. Hyperspectral Change Detection in the Presenceof Diurnal and Seasonal Variations. IEEE Trans. Geosci. Remote Sens. 2008, 46, 237–249. [Google Scholar] [CrossRef]
- Hasanlou, M.; Seydi, S.T. Hyperspectral change detection: An experimental comparative study. Int. J. Remote Sens. 2018, 39, 1–55. [Google Scholar] [CrossRef]
- Seydi, S.T.; Hasanlou, M. Sensitivity analysis of pansharpening in hyperspectral change detection. Appl. Geomat. 2018, 10, 65–75. [Google Scholar] [CrossRef]
- Song, A.; Choi, J.; Han, Y.; Kim, Y. Change Detection in Hyperspectral Images Using Recurrent 3D Fully Convolutional Networks. Remote Sens. 2018, 10, 1827. [Google Scholar] [CrossRef]
- ASHBINDU SINGH. Review Article Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Chamundeeswari, V.V.; Singh, K.; Wiesbeck, W. Monitoring and change detection of natural disaster (like subsidence) using Synthetic Aperture Radar (SAR) data. In Proceedings of the 2008 International Conference on Recent Advances in Microwave Theory and Applications, Jaipur, India, 21–24 November 2008; pp. 419–421. [Google Scholar]
- Kennedy, R.E.; Townsend, P.A.; Gross, J.E.; Cohen, W.B.; Bolstad, P.; Wang, Y.Q.; Adams, P.; Gross, J.E.; Goetz, S.J.; Cihlar, J. Remote sensing change detection tools for natural resource managers: understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sens. Environ. 2009, 113, 1382–1396. [Google Scholar] [CrossRef]
- Awad, M. Sea water chlorophyll-a estimation using hyperspectral images and supervised Artificial Neural Network. Ecol. Inform. 2014, 24, 60–68. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 2009, 105, 142–154. [Google Scholar] [CrossRef]
- Hégarat-Mascle, S.L.; Ottlé, C.; Guérin, C. Land cover change detection at coarse spatial scales based on iterative estimation and previous state information. Remote Sens. Environ. 2018, 95, 464–479. [Google Scholar]
- Malila, W.A. Change Vector Analysis: An Approach for Detecting Forest Changes with Landsat. 1980. Available online: https://docs.lib.purdue.edu/lars_symp/385/ (accessed on 1 January 2018).
- Bovolo, F.; Marchesi, S.; Bruzzone, L. A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2196–2212. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. A Theoretical Framework for Unsupervised Change Detection Based on Change Vector Analysis in the Polar Domain. IEEE Trans. Geosci. Remote Sens. 2006, 45, 218–236. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. An adaptive thresholding approach to multiple-change detection in multispectral images. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; Volume 4, pp. 233–236. [Google Scholar]
- Baisantry, M.; Negi, D.S.; Manocha, O.P. Change Vector Analysis using Enhanced PCA and Inverse Triangular Function-based Thresholding. Defence Sci. J. 2012, 62, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, H.; Deng, K.; Fan, H.; Yu, M. Strategies Combining Spectral Angle Mapper and Change Vector Analysis to Unsupervised Change Detection in Multispectral Images. IEEE Geosci. Remote Sens. Lett. 2017, 13, 681–685. [Google Scholar] [CrossRef]
- Thonfeld, F.; Feilhauer, H.; Braun, M.; Menz, G. Robust Change Vector Analysis (RCVA) for multi-sensor very high resolution optical satellite data. Int. J. Appl. Earth Obs. Geoinform. 2016, 50, 131–140. [Google Scholar] [CrossRef]
- Nielsen, A.A.; Conradsen, K.; Simpson, J.J. Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies. Remote Sens. Environ. 1998, 64, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.A. The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 2007, 16, 463–478. [Google Scholar] [CrossRef]
- Liu, S.; Du, Q.; Tong, X.; Samat, A.; Pan, H.; Ma, X.; Liu, S.; Du, Q.; Tong, X.; Samat, A. Band Selection-Based Dimensionality Reduction for Change Detection in Multi-Temporal Hyperspectral Images. Remote Sens. 2017, 9, 1008. [Google Scholar] [CrossRef]
- Shao, P.; Shi, W.; He, P.; Hao, M.; Zhang, X. Novel Approach to Unsupervised Change Detection Based on a Robust Semi-Supervised FCM Clustering Algorithm. Remote Sens. 2016, 8, 264. [Google Scholar] [CrossRef]
- Zhou, J.; Kwan, C.; Ayhan, B.; Eismann, M.T. A Novel Cluster Kernel RX Algorithm for Anomaly and Change Detection Using Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6497–6504. [Google Scholar] [CrossRef]
- Erturk, A.; Iordache, M.D.; Plaza, A. Sparse Unmixing-Based Change Detection for Multitemporal Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 9, 708–719. [Google Scholar] [CrossRef]
- Yuan, Y.; Lv, H.; Lu, X. Semi-supervised change detection method for multi-temporal hyperspectral images. Neurocomputing 2015, 148, 363–375. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Jakovels, D.; Filipovs, J.; Erins, G.; Taskovs, J. Airborne hyperspectral imaging in the visible-to-mid wave infrared spectral range by fusing three spectral sensors. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications V; SPIE: Bellingham, WA, USA, 2014. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wang, Q.; Yuan, Z.; Du, Q.; Li, X. GETNET: A General End-to-end Two-dimensional CNN Framework for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3–13. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, Z.; Gong, M.; Liu, J. Discriminative Feature Learning for Unsupervised Change Detection in Heterogeneous Images Based on a Coupled Neural Network. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1–15. [Google Scholar] [CrossRef]
- Amin, A.M.E.; Liu, Q.; Wang, Y. Zoom out CNNs features for optical remote sensing change detection. In Proceedings of the International Conference on Image, Vision and Computing, Chengdu, China, 2–4 June 2017; pp. 812–817. [Google Scholar]
- de Jong, K.L.; Bosman, A.S. Unsupervised Change Detection in Satellite Images Using Convolutional Neural Networks. arXiv, 2018; arXiv:1812.05815. [Google Scholar]
- Mandić, I.; Peić, H.; Lerga, J.; Štajduhar, I. Denoising of X-ray Images Using the Adaptive Algorithm Based on the LPA-RICI Algorithm. J. Imaging 2018, 4, 34. [Google Scholar] [CrossRef]
- Wang, Q.; Wan, J.; Nie, F.; Liu, B.; Yan, C.; Li, X. Hierarchical feature selection for random projection. IEEE Trans. Neural Netw. Learn. Syst. 2018. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, M.; Nie, F.; Li, X. Detecting coherent groups in crowd scenes by multiview clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2018. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Park, S.J.; Hong, K.S. RDFNet: RGB-D Multi-level Residual Feature Fusion for Indoor Semantic Segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; Volume 39, pp. 640–651. [Google Scholar]
- Li, Y.; Zhang, J.; Cheng, Y.; Huang, K.; Tan, T. DF2Net: Discriminative Feature Learning and Fusion Network for RGB-D Indoor Scene Classification. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 7041–7048. [Google Scholar]
- Zhang, J.; Zhang, T.; Dai, Y.; Harandi, M.; Hartley, R.I. Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling Perspective. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; pp. 9029–9038. [Google Scholar]
- Folkman, M.A.; Jarecke, P.J. EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration. Hyperspectral Remote Sens. Land Atmos. 2001, 4151, 40–51. [Google Scholar] [Green Version]
- Datt, B.; Mcvicar, T.R.; Van Niel, T.G.; Jupp, D.L.B.; Pearlman, J.S. Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1246–1259. [Google Scholar] [CrossRef]
- Pearlman, J.S.; Barry, P.S.; Segal, C.C.; Shepanski, J.; Beiso, D.; Carman, S.L. Hyperion, a Space-Based Imaging Spectrometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1160–1173. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009 (CVPR 2009), Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv, 2014; arXiv:1412.6980. [Google Scholar]
- Nemmour, H.; Chibani, Y. Multiple support vector machines for land cover change detection: An application for mapping urban extensions. Isprs J. Photogramm. Remote Sens. 2006, 61, 125–133. [Google Scholar] [CrossRef]
Layers | Kernel Size | Output Channels | Stride | Padding |
---|---|---|---|---|
Convolution + ReLU | 11 × 11 | 64 | 4 | 2 |
MaxPooling | 3 × 3 | 64 | 2 | 0 |
Convolution + ReLU | 5 × 5 | 192 | 1 | 2 |
MaxPooling | 3 × 3 | 192 | 2 | 0 |
Convolution + ReLU | 3 × 3 | 384 | 1 | 1 |
Convolution + ReLU | 3 × 3 | 256 | 1 | 1 |
Convolution + ReLU | 3 × 3 | 256 | 1 | 1 |
Convolution + ReLU + BN | 3 × 3 | 64 | 1 | 1 |
DeConvolution + ReLU + BN | 3 × 3 | 256 | 2 | 0 |
DeConvolution + ReLU + BN | 3 × 3 | 64 | 2 | 0 |
Convolution | 1 x 1 | 64 | 1 | 0 |
Convolution | 1 x 1 | 2 | 1 | 0 |
Different Methods | The Experiment Datasets | ||||
---|---|---|---|---|---|
Farmland | Countryside | Poyang Lake | |||
Pixel based | CVA | OA | 0.9523 | 0.9825 | 0.9693 |
Kappa | 0.8855 | 0.9548 | 0.8092 | ||
Pixel based | PCA-CVA | OA | 0.9668 | 0.9276 | 0.9548 |
Kappa | 0.9202 | 0.8216 | 0.7259 | ||
Pixel based | IR-MAD | OA | 0.9604 | 0.8568 | 0.8248 |
Kappa | 0.9231 | 0.8423 | 0.7041 | ||
Pixel based | SVM | OA | 0.8420 | 0.9536 | 0.9583 |
Kappa | 0.6417 | 0.8767 | 0.7266 | ||
Patch based | CNN | OA | 0.9347 | 0.9033 | 0.9522 |
Kappa | 0.8504 | 0.7547 | 0.8412 | ||
Patch based | GETNET | OA | 0.9845 | 0.9869 | 0.9875 |
Kappa | 0.9622 | 0.9656 | 0.9102 | ||
FCN based | Ours | OA | 0.9694 | 0.9843 | 0.9778 |
Kappa | 0.9426 | 0.9591 | 0.9413 |
Comparison Methods | The Experiment Datasets | |||
---|---|---|---|---|
Farmland | Countryside | Poyang Lake | ||
Image-level Subtraction | OA | 0.9326 | 0.9428 | 0.9351 |
Feature-level Element Subtraction | OA | 0.9541 | 0.9792 | 0.9649 |
Feature-level Element Summation | OA | 0.9673 | 0.9831 | 0.9704 |
Feature-level Concatenation | OA | 0.9694 | 0.9843 | 0.9778 |
Comparison Methods | The Experiment Datasets | |||
---|---|---|---|---|
Farmland | Countryside | Poyang Lake | ||
CVA (one map) | OA | 0.9547 | 0.9836 | 0.9716 |
PCA-CVA (one map) | OA | 0.9642 | 0.9317 | 0.9567 |
All three maps | OA | 0.9694 | 0.9843 | 0.9778 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yuan, Z.; Wang, Q. Unsupervised Deep Noise Modeling for Hyperspectral Image Change Detection. Remote Sens. 2019, 11, 258. https://doi.org/10.3390/rs11030258
Li X, Yuan Z, Wang Q. Unsupervised Deep Noise Modeling for Hyperspectral Image Change Detection. Remote Sensing. 2019; 11(3):258. https://doi.org/10.3390/rs11030258
Chicago/Turabian StyleLi, Xuelong, Zhenghang Yuan, and Qi Wang. 2019. "Unsupervised Deep Noise Modeling for Hyperspectral Image Change Detection" Remote Sensing 11, no. 3: 258. https://doi.org/10.3390/rs11030258
APA StyleLi, X., Yuan, Z., & Wang, Q. (2019). Unsupervised Deep Noise Modeling for Hyperspectral Image Change Detection. Remote Sensing, 11(3), 258. https://doi.org/10.3390/rs11030258