Accuracy of the TanDEM-X Digital Elevation Model for Coastal Geomorphological Studies in Patagonia (South Argentina)
Abstract
:1. Introduction
2. Study Areas
3. Methodology
3.1. Elevation Dataset
3.1.1. Global Positioning System (GPS) Dataset
3.1.2. TanDEM-X Digital Elevation Model (DEM)
3.2. Vertical Accuracy Assessment
3.3. Landform Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Montgomery, D.R. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resour. Res. 1994, 30, 1019–1028. [Google Scholar] [CrossRef]
- Smith, M.J.; Chandler, J.; Rose, J. High spatial resolution data acquisition for the geosciences: Kite aerial photography. Earth Surf. Process. Landf. 2009, 34, 155–161. [Google Scholar] [CrossRef]
- Tan, M.L.; Ficklin, D.L.; Dixon, B.; Ibrahim, A.L.; Yusop, Z.; Chaplot, V. Impacts on DEM resolution, source, and resampling technique on SWAT-simulated streamflow. Appl. Geogr. 2015, 63, 357–368. [Google Scholar] [CrossRef]
- Davila, N.; Capra, L.; Gavilanes Ruiz, J.C.; Varley, N.; Norini, G.; Vazquez, A.G. Recent lahars at Volcán de Colima (Mexico): Drainage variation and spectral classification. J. Volcanol. Geotherm. Res. 2007, 165, 127–141. [Google Scholar] [CrossRef]
- Albino, F.; Smets, B.; D’Oreye, N.; Kervyn, F. High-resolution TanDEM-X DEM: An accurate method to estimate lava flow volumes at Nyamulagira volcano (D. R. Congo). J. Geophys. Res. Solid Earth 2015, 120, 4189–4207. [Google Scholar] [CrossRef]
- Di Traglia, F.; Bartolini, S.; Artesi, E.; Nolesini, T.; Ciampalini, A.; Lagomarsino, D.; Martí, J.; Casagli, N. Susceptibility of intrusion-related landslides at volcanic islands: The Stromboli case study. Landslides 2018, 15, 21–29. [Google Scholar] [CrossRef]
- Harrower, M.J. Geographic information systems (GIS) hydrological modeling in archeology: An example from the origins of irrigation in Southwest Arabia (Yemen). J. Archeol. Sci. 2010, 37, 1447–1452. [Google Scholar] [CrossRef]
- Chase, A.F.; Chase, D.Z.; Weishampel, J.F.; Drake, J.B.; Shreshta, R.L.; Slatton, K.C.; Awe, J.J.; Carter, W.E. Airborne LiDAR, archeology, and the ancient Maya landscape at Caracol, Belize. J. Archeol. Sci. 2011, 38, 387–398. [Google Scholar] [CrossRef]
- Bini, M.; Rossi, V.; Amorosi, A.; Pappalardo, M.; Sarti, G.; Noti, V.; Capitani, M.; Fabiani, F.; Gualandi, M.L. Palaeoenvironments and palaeotopography of a multilayered city during the Etruscan and Roman periods: Early interaction of fluvial processes and urban growth at Pisa (Tuscany, Italy). J. Archaeol. Sci. 2015, 59, 197–210. [Google Scholar] [CrossRef]
- Bini, M.; Pappalardo, M.; Rossi, V.; Noti, V.; Amorosi, A.; Sarti, G. Deciphering the effects of human activity on urban areas through morphostratigraphic analysis: The case of Pisa, Northwest Italy. Geoarchaeology 2018, 33, 43–51. [Google Scholar] [CrossRef]
- Tarolli, P. High-resolution topography for understanding Earth surface processes: Opportunities and challenges. Geomorphology 2014, 216, 295–312. [Google Scholar] [CrossRef]
- Ciampalini, A.; Raspini, F.; Frodella, W.; Bardi, F.; Bianchini, S.; Moretti, S. The effectiveness of high-resolution data combined with PSInSAR data in landslide study. Landslides 2016, 13, 399–410. [Google Scholar] [CrossRef]
- Oskin, M.E.; Le, K.; Strane, M.D. Quantifying fault-zone activity in arid environments with high-resolution topography. Geophys. Res. Lett. 2007, 34, L23S05. [Google Scholar] [CrossRef]
- Rabassa, J. The Late Cenozoic of Patagonia and Tierra del Fuego; Developments in Quaternary Science, Elsevier Ltd.: Amsterdam, The Netherlands, 2008; p. 513. [Google Scholar]
- Schellmann, G.; Radtke, U. Timing and magnitude of Holocene sea-level changes along the middle and south Patagonian Atlantic coast derived from beach ridge systems, littoral terraces and valley-mouth terraces. Earth-Science Rev. 2010, 103, 1–30. [Google Scholar] [CrossRef]
- Ribolini, A.; Aguirre, M.; Baneschi, I.; Consoloni, I.; Fucks, E.; Isola, I.; Mazzarini, F.; Pappalardo, M.; Zanchetta, G.; Bini, M. Holocene beach ridges and coastal evolution in the Cabo Raso Bay (Atlantic Patagonian Coast, Argentina). J. Coast. Res. 2011, 27, 973–983. [Google Scholar] [CrossRef]
- Zanchetta, G.; Consoloni, I.; Isola, I.; Pappalardo, M.; Ribolini, A.; Aguirre, M.; Fucks, E.; Baneschi, I.; Bini, M.; Ragaini, L.; et al. New insights on the Holocene marine transgression in the Bahía Camarones (Chubut, Argentina). Ital. J. Geosci. 2012, 131, 19–31. [Google Scholar] [CrossRef]
- Zanchetta, G.; Bini, M.; Isola, I.; Pappalardo, M.; Ribolini, A.; Consoloni, I.; Boretto, G.; Fucks, E.; Ragaini, L.; Terrasi, F. Middle- to late-Holocene relative sea-level changes at Puerto Deseado (Patagonia, Argentina). Holocene 2014, 24, 307–317. [Google Scholar] [CrossRef]
- Pappalardo, M.; Aguirre, M.; Bini, M.; Consoloni, I.; Fucks, E.; Hellstrom, J.; Isola, I.; Ribolini, A.; Zanchetta, G. Coastal landscape evolution and sea-level change: A case study from Central Patagonia (Argentina). Z. Geomorphol. 2015, 59, 145–172. [Google Scholar] [CrossRef]
- Bini, M.; Isola, I.; Zanchetta, G.; Pappalardo, M.; Ribolini, A.; Ragaini, L.; Baroni, C.; Boretto, G.; Fuck, E.; Morigi, C.; et al. Mid-Holocene relative sea-level changes along Atlantic Patagonia: New data from Camarones, Chubut, Argentina. Holocene 2018, 28, 56–64. [Google Scholar] [CrossRef]
- Bini, M.; Zanchetta, G.; Ribolini, A.; Salvatore, M.C.; Baroni, C.; Pappalardo, M.; Isola, I.; Isla, F.I.; Fucks, E.; Boretto, G.; et al. Last Interglacial Sea-level highstand deduced from notches and inner margins of marine terraces at Puerto Deseado, Santa Cruz Province, Argentina. Geogr. Fis. Din. Quat. 2017, 40, 29–39. [Google Scholar]
- Isola, I.; Bini, M.; Ribolini, A.; Pappalardo, M.; Consoloni, I.; Fucks, E.; Boretto, G.; Ragaini, L.; Zanchetta, G. Geomorphologic map of northeastern sector of San Jorge gulf (Chubut, Argentina). J. Maps 2011, 7, 476–485. [Google Scholar] [CrossRef]
- Pipaud, I.; Loibl, D.; Lehmkuhl, F. Evaluation of TanDEM-X elevation data for geomorphological mapping and interpretation in high mountain environments—A case study from SE Tibet, China. Geomorphology 2015, 246, 232–254. [Google Scholar] [CrossRef]
- Erasmi, S.; Rosenbauer, R.; Buchbach, R.; Busche, T.; Rutishauser, S. Evaluating the Quality and Accuracy of TanDEM-X Digital Elevation Models at Archaeological Sites in the Cilician Plain, Turkey. Remote Sens. 2014, 6, 9475–9493. [Google Scholar] [CrossRef] [Green Version]
- Avtar, R.; Yunus, A.P.; Kraines, S.; Yamamuro, M. Evaluation of DEM generation based on interferometric SAR using TanDEM-X data in Tokyo. Phys. Chem. Earth 2015, 83–84, 166–177. [Google Scholar] [CrossRef]
- Rizzoli, P.; Bräutigam, B.; Kraus, T.; Martone, M.; Krieger, G. Relative height error analysis of TanDEM-X elevation data. ISPRS J. Photogr. Remote Sens. 2012, 73, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Bini, M.; Isola, I.; Pappalardo, M.; Ribolini, A.; Favalli, M.; Ragaini, L.; Zanchetta, G. Abrasive notches along the Atlantic patagonian coast and their potential use as sea level markers: The case of puerto deseado (Santa Cruz, Argentina). Earth Surf. Process. Landf. 2014, 39, 1550–1558. [Google Scholar] [CrossRef]
- Darwin, C.R. Geological Observations on South America: Being the Third Part of the Geology of the Voyage of the Beagle, under the Command of Capt. Fitzroy, R.N. during the Years 1832 to 1836; Smith Elder and Co.: London, UK, 1846. [Google Scholar]
- Guido, D.; Escayola, M.; Schalamuk, I. The basement of the Deseado Massif at Bahía Laura, Patagonia, Argentina: A proposal forits evolution. J. S. Am. Earth Sci. 2004, 16, 567–577. [Google Scholar] [CrossRef]
- Pankhurst, R.J.; Rapela, C.R. Production of Jurassic rhyolite by anatexis of the lower crust of Patagonia. Earth Planet. Sci. Lett. 1995, 134, 23–36. [Google Scholar] [CrossRef]
- Pankhurst, R.J.; Leat, P.T.; Sruoga, P.; Rapela, C.W.; Márquez, M.; Storey, B.C.; Riley, T.R. The Chon Aike province of Patagonia and related rocks in West Antarctica: A silicic large igneous province. J. Volcanol. Geotherm. Res. 1998, 81, 113–136. [Google Scholar] [CrossRef]
- Coronato, A.M.J.; Coronato, F.; Mazzoni, E.; Vázquez, M. The Physical Geography of Patagonia and Tierra del Fuego. Dev. Quat. Sci. 2008, 11, 13–55. [Google Scholar]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef] [Green Version]
- Wessel, B. TanDEM-X Ground Segment DEM Products Specification Document. EOC, DLR, Oberpfaffenhofen, Germany, 2016; Issue 3.1. Public Document TD-GSPS-0021. Available online: https://elib.dlr.de/108014/1/TD-GS-PS-0021_DEM-Product-Specification_v3.1.pdf (accessed on 11 February 2019).
- Maune, D.F.; Maitra, J.B.; McKay, E.J. Accuracy standards. In Digital Elevation Model Technologies and Applications: The DEM User Manual; Maune, D., Ed.; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2001; pp. 61–82. [Google Scholar]
- Fisher, A.; Tate, N.J. Causes and consequences of error in digital elevation models. Prog. Phys. Geogr. 2006, 30, 467–489. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Höhle, J.; Höhle, M. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J. Photogramm. Remote Sens. 2009, 64, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Endreny, T.A.; Wood, E.F.; Lettenmaier, D.P. Satellite-derived digital elevation model accuracy: Hydrogeomorphological analysis requirements. Hydrol. Process. 2000, 14, 1–20. [Google Scholar] [CrossRef]
- Tighe, M.L.; Chamberlain, D. Accuracy comparison of the SRTM, ASTER, NED, NEXTMAP® USA Digital Terrain Model over several USA study sites. In Proceedings of the ASPRS/MAPPS Fall Conference, San Antonia, TX, USA, 16–19 November 2009. [Google Scholar]
- Li, P.; Shi, C.; Li, Z.; Muller, J.P.; Drummond, J.; Li, X.; Li, T.; Li, Y.; Liu, J. Evaluation of ASTER GDEM Ver2 Using GPS Measurements and SRTM Ver4.1 in China. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, I-4, 181–186. [Google Scholar] [CrossRef]
- Patel, A.; Katiyar, S.K.; Prasad, V. Performances evaluation of different open source DEM using Differential Global Positioning System (DGPS). Egypt. J. Remote Sens. Space Sci. 2016, 19, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Maire, C.; Datcu, M.; Audenino, P. SAR DEM filtering by mean of Bayesian and multi-scale, nonstationary methods. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Tolouse, France, 21–25 July 2003. [Google Scholar] [CrossRef]
Data | Spatial Resolution (m) | Horizontal Datum | Vertical Datum | Absolute Horizontal Accuracy CE90 (m) | Absolute Vertical Accuracy LE90 (cm) | Date of Procurement |
---|---|---|---|---|---|---|
GPS points | - | WGS84 | WGS84 | - | <10 | Jan–Feb 2016 |
TDX-DEM | 0.4’’ (~12) | WGS84 (G1150) | WGS84 (G1150) | <10 | <10 | Mar 2017 |
n° outliers | MIN (m) | MAX (m) | ME (m) | MAE (m) | RMSE (m) | LE90% (m) | Eq. LR | |
---|---|---|---|---|---|---|---|---|
Cabocurioso 1 | 17 | −2.19 | 1.16 | −0.28 | 0.41 | 0.51 | 0.84 | y = 0.993x − 0.140 |
Cabocurioso 2 | / | −2.10 | 0.77 | −0.28 | 0.42 | 0.54 | 0.89 | y = 1.004x − 0.372 |
Deseado Cuevas | 15 | −3.38 | 2.40 | −0.26 | 0.78 | 1.05 | 1.73 | y = 0.968x − 0.483 |
Deseado Nord | / | −1.84 | 2.15 | −0.15 | 0.44 | 0.57 | 0.94 | y = 0.973x − 0.457 |
Playa La Mina | / | −2.10 | 0.76 | −0.56 | 0.63 | 0.79 | 1.30 | y = 0.964x − 0.174 |
Ria Deseado | 4 | −0.67 | 3.25 | 0.12 | 0.49 | 0.89 | 1.46 | y = 0.619x + 5.90 |
All DGPS points | 36 | −3.38 | 3.25 | −0.24 | 0.53 | 0.73 | 1.19 | y = 0.983x + 0.107 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasquetti, F.; Bini, M.; Ciampalini, A. Accuracy of the TanDEM-X Digital Elevation Model for Coastal Geomorphological Studies in Patagonia (South Argentina). Remote Sens. 2019, 11, 1767. https://doi.org/10.3390/rs11151767
Pasquetti F, Bini M, Ciampalini A. Accuracy of the TanDEM-X Digital Elevation Model for Coastal Geomorphological Studies in Patagonia (South Argentina). Remote Sensing. 2019; 11(15):1767. https://doi.org/10.3390/rs11151767
Chicago/Turabian StylePasquetti, Francesca, Monica Bini, and Andrea Ciampalini. 2019. "Accuracy of the TanDEM-X Digital Elevation Model for Coastal Geomorphological Studies in Patagonia (South Argentina)" Remote Sensing 11, no. 15: 1767. https://doi.org/10.3390/rs11151767
APA StylePasquetti, F., Bini, M., & Ciampalini, A. (2019). Accuracy of the TanDEM-X Digital Elevation Model for Coastal Geomorphological Studies in Patagonia (South Argentina). Remote Sensing, 11(15), 1767. https://doi.org/10.3390/rs11151767