Next Article in Journal
Modelling the Spectral Uncertainty of Geographic Features in High-Resolution Remote Sensing Images: Semi-Supervising and Weighted Interval Type-2 Fuzzy C-Means Clustering
Previous Article in Journal
Finite Difference Analysis and Bivariate Correlation of Hyperspectral Data for Detecting Laurel Wilt Disease and Nutritional Deficiency in Avocado
Open AccessArticle

A Model-Based Design System for Terrestrial Laser Scanning Networks in Complex Sites

Department of Geomatics Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
*
Author to whom correspondence should be addressed.
Remote Sens. 2019, 11(15), 1749; https://doi.org/10.3390/rs11151749
Received: 26 June 2019 / Revised: 20 July 2019 / Accepted: 22 July 2019 / Published: 25 July 2019
With the rapid increase of terrestrial laser scanner (TLS) applications, especially for the high-accuracy modelling of large-volume objects, a design system is needed to provide solutions for both scanner and target placement that can meet the project requirements in terms of completeness, precision, economy, and reliability. In this paper, a hierarchical strategy driven by an improved optimization method is developed to solve the TLS viewpoint planning problem. In addition, the placement of the targets is determined by optimizing the target arrangement criterion, and the number of target locations is minimized by accepting the close to optimal target arrangements. Finally, the quality of the design, including the sensitivity of the object coverage to viewpoint placement and the precision of the point cloud are provided. Two building complexes located on University of Calgary campus are used as the experimental datasets in this research. The designs for scanner placement are compared with the “brute force” strategy in terms of the optimality of the solutions and runtime. The results showed that the proposed strategy provided scanning networks with a compatible quality but with more than 80% time savings in design. The number of targets necessary for registration from our system is surprisingly small, considering the volume and complexity of the networks. Through the quality assessments, the sensitivity of the object coverage to the scanner placement indicates how careful the field crew should be when placing the scanner for data capture, and the point cloud precision indicates if the network design can meet the project requirements. View Full-Text
Keywords: terrestrial laser scanner; network design; viewpoint planning; optimization methods; greedy algorithm; 3D modelling terrestrial laser scanner; network design; viewpoint planning; optimization methods; greedy algorithm; 3D modelling
Show Figures

Figure 1

MDPI and ACS Style

Jia, F.; Lichti, D.D. A Model-Based Design System for Terrestrial Laser Scanning Networks in Complex Sites. Remote Sens. 2019, 11, 1749. https://doi.org/10.3390/rs11151749

AMA Style

Jia F, Lichti DD. A Model-Based Design System for Terrestrial Laser Scanning Networks in Complex Sites. Remote Sensing. 2019; 11(15):1749. https://doi.org/10.3390/rs11151749

Chicago/Turabian Style

Jia, Fengman; Lichti, Derek D. 2019. "A Model-Based Design System for Terrestrial Laser Scanning Networks in Complex Sites" Remote Sens. 11, no. 15: 1749. https://doi.org/10.3390/rs11151749

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop