Next Article in Journal
Modelling the L-Band Snow-Covered Surface Emission in a Winter Canadian Prairie Environment
Previous Article in Journal
Applications of DINEOF to Satellite-Derived Chlorophyll-a from a Productive Coastal Region
Previous Article in Special Issue
A New Single-Band Pixel-by-Pixel Atmospheric Correction Method to Improve the Accuracy in Remote Sensing Estimates of LST. Application to Landsat 7-ETM+
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessTechnical Note
Remote Sens. 2018, 10(9), 1450; https://doi.org/10.3390/rs10091450

Comparison of Three Methods for Estimating Land Surface Temperature from Landsat 8-TIRS Sensor Data

1
EOLAB SPAIN S.L., Parc Científic Universitat de València, 46980 Valencia, Spain
2
Department of Physics, University of Balearic Islands, 07122 Palma, Spain
*
Author to whom correspondence should be addressed.
Received: 30 July 2018 / Revised: 5 September 2018 / Accepted: 8 September 2018 / Published: 11 September 2018
Full-Text   |   PDF [1467 KB, uploaded 12 September 2018]   |  

Abstract

After Landsat 8 was launched in 2013, it was observed that for Thermal Infrared sensor (TIRS) bands, radiance from outside of an instrument’s field-of-view produced a non-uniform ghost signal across the focal plane that varied depending on the out-of-scene content (i.e., the stray light effect). A new stray light correction algorithm (SLCA) is currently operational and has been implemented into the United States Geological Survey (USGS) ground system since February 2017. The SLCA has also been applied to reprocess historical Landsat 8 scenes. After approximately two years of SLCA implementation, more land surface temperature (LST) validation studies are required to check the effect of correction in the estimation of LST from different retrieval algorithms. For this purpose, three different LST estimation method algorithms (i.e., the radiative transfer equation (RTE), single-channel algorithm (SCA), and split-window algorithm (SWA)) have been assessed. The study site is located on the campus of the University of Balearic Islands on the island of Mallorca (Spain) in the western Mediterranean Sea. The site is considered a heterogeneous area that is composed of different types of surfaces, such as buildings, asphalt roads, farming areas, sloped terrains, orange fields, almond trees, lawns, and some natural vegetation regions. Data from 21 scenes, which were acquired by the Landsat 8-TIRS sensor and extracted from a 100 × 100 m2 pixel, were used to retrieve the LST with different algorithms; then, they were compared with in situ LST measurements from a broadband thermal infrared radiometer located on the same Landsat 8 pixel. The results show good performances of the three methods, with the SWA showing the lowest observed RMSE (within 1.6–2 K), whereas the SCA applied to the TIRS band 10 (10 µm) was also appropriate, with a RMSE ranging within 2.0–2.3 K. The LST estimates using the RTE algorithm display the highest observed RMSE values (within 2.0–3.6 K) of all of the compared methods, but with an almost unbiased value of −0.1 K for the case of techniques applied to band 10 data. The SWAs are the preferred method to estimate the LST in our study area. However, further validation studies around the world are required. View Full-Text
Keywords: land surface temperature; thermal infrared data; LST validation; heterogeneous site; Landsat 8-TIRS land surface temperature; thermal infrared data; LST validation; heterogeneous site; Landsat 8-TIRS
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

García-Santos, V.; Cuxart, J.; Martínez-Villagrasa, D.; Jiménez, M.A.; Simó, G. Comparison of Three Methods for Estimating Land Surface Temperature from Landsat 8-TIRS Sensor Data. Remote Sens. 2018, 10, 1450.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top