Assessment of MODIS, OMI, MISR and CALIOP Aerosol Products for Estimating Surface Visual Range: A Mathematical Model for Hong Kong
Abstract
:1. Introduction
2. Study Area, Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Satellite-Based Aerosol Observations
2.2.2. Visual Range and Climate Data
2.3. Methods
2.3.1. Evaluation of Satellite Sensors
2.3.2. Estimating Surface Visibility
3. Results
3.1. AOD-Bext Relationship
3.2. Summary of Sensor Performance
3.3. Estimation of Surface Visibility
3.4. Time Series Analysis
3.5. Parameterization of the AOD-VR Relationship
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Total, A.; Year, A.T. Number of Hours of Reduced Visibility Observed at the Hong Kong Observatory Since 1968; Hong Kong Observatory: Tsim Sha Tsui, Hong Kong, 1968. [Google Scholar]
- Wong, M.S.; Lee, K.H.; Nichol, J.E. Estimation of aerosol sources and aerosol transport pathways using AERONET clustering and backward trajectories: A case study of Hong Kong. Int. J. Remote Sens. 2013, 34, 938–955. [Google Scholar] [CrossRef]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Lee, Y.C.; Hills, P.R. Cool season pollution episodes in Hong Kong, 1996–2002. Atmos. Environ. 2003, 37, 2927–2939. [Google Scholar] [CrossRef]
- Ho, K.; Lee, S.; Chan, C.K.; Yu, J.C.; Chow, J.C.; Yao, X. Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmos. Environ. 2003, 37, 31–39. [Google Scholar] [CrossRef]
- Xiao, F.; Brajer, V.; Mead, R.W. Blowing in the wind: The impact of China’s Pearl River Delta on Hong Kong’s air quality. Sci. Total Environ. 2006, 367, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Lyamani, H.; Olmo, F.J.; Alados-Arboledas, L. Physical and optical properties of aerosols over an urban location in Spain: Seasonal and diurnal variability. Atmos. Chem. Phys. 2010, 10, 239–254. [Google Scholar] [CrossRef]
- Devara, P.C.S.; Kumar, S.; Pandithurai, G.; Safai, P.D.; Dipu, S. Comparison between urban aerosol products retrieved from collocated Cimel and Prede Sun/sky radiometers at Pune, India. Meteorol. Atmos. Phys. 2013, 120, 189–200. [Google Scholar] [CrossRef]
- Horvath, H. The University of Vienna telephotometer. Atmos. Environ. 1981, 15, 2537–2546. [Google Scholar] [CrossRef]
- Han, Y.; Lu, D.; Rao, R.Z.; Wang, Y.J. Determination of the complex refractive indices of aerosol from aerodynamic particle size spectrometer and integrating nephelometer measurements. Appl. Opt. 2009, 48, 4108–4117. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.G. Visibility: Science and regulation. J. Air Waste Manag. Assoc. 2002, 52, 628–713. [Google Scholar] [CrossRef] [PubMed]
- Bian, Q. Study of Visibility Degradation over the Pearl River Delta Region: Source Apportionment and Impact of Chemical Characteristics; Hong Kong University of Science and Technology: Clear Water Bay, Hong Kong, 2011. [Google Scholar]
- Henry, R.C. A field study of visual perception of complex natural targets through atmospheric haze by naïve observers. Atmos. Environ. 2006, 40, 5251–5261. [Google Scholar] [CrossRef]
- Anderson, T.L.; Masonis, S.J.; Covert, D.S.; Ahlquist, N.C.; Howell, S.G.; Clarke, A.D.; McNaughton, C.S. Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia. J. Geophys. Res. 2003, 108, 15–19. [Google Scholar] [CrossRef]
- Pikridas, M.; Sciare, J.; Freutel, F.; Crumeyrolle, S.; Von Der Weiden-Reinmüller, S.-L.; Borbon, A.; Schwarzenboeck, A.; Merkel, M.; Crippa, M.; Kostenidou, E.; et al. In situ formation and spatial variability of particle number concentration in a European megacity. Atmos. Chem. Phys. 2015, 15, 10219–10237. [Google Scholar] [CrossRef]
- Zhao, T.; Liu, D.; Zheng, X.; Yang, L.; Gu, X.; Hu, J.; Shu, Z.; Chang, J.; Wu, X. Revealed variations of air quality in industrial development over a remote plateau of Southwest China: An application of atmospheric visibility data. Meteorol. Atmos. Phys. 2017, 129, 659–667. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Geogdzhayev, I.V.; Liu, L.; Ogren, J.A.; Lacis, A.A.; Rossow, W.B.; Hovenier, J.W.; Volten, H.; Muñoz, O. Aerosol retrievals from AVHRR radiances: Effects of particle nonsphericity and absorption and an updated long-term global climatology of aerosol properties. J. Quant. Spectrosc. Radiat. Transf. 2003, 79–80, 953–972. [Google Scholar] [CrossRef]
- Bendix, J. Determination of fog horizontal visibility by means of NOAA-AVHRR. In 1995 International Geoscience and Remote Sensing Symposium, IGARSS ’95. Quantitative Remote Sensing for Science and Applications; IEEE: Piscataway, NJ, USA, 1995; Volume 3, pp. 1847–1849. [Google Scholar]
- Williams, D.H.; Cogan, J.L. Estimation of visibility from satellite imagery. Appl. Opt. 1991, 30, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Nichol, J.E.; Wong, M.S.; Wang, J. A 3D aerosol and visibility information system for urban areas using remote sensing and GIS. Atmos. Environ. 2010, 44, 2501–2506. [Google Scholar] [CrossRef]
- Hadjimitsis, D.G.; Clayton, C.; Toulios, L. Retrieving visibility values using satellite remote sensing data. Phys. Chem. Earth Parts A/B/C 2010, 35, 121–124. [Google Scholar] [CrossRef]
- Fei, H.; Hong, W.; Junping, Q.; Guofu, W. Retrieval of atmospheric horizontal visibility by statistical regression from NOAA/AVHRR satellite data. J. Ocean Univ. China 2006, 5, 207–212. [Google Scholar] [CrossRef]
- Shahzad, M.I.; Nichol, J.E.; Wang, J.; Campbell, J.R.; Chan, P.W. Estimating surface visibility at Hong Kong from ground-based LIDAR, sun photometer and operational MODIS products. J. Air Waste Manag. Assoc. 2013, 63, 1098–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.; Li, C.; Geng, F.; Zhou, G.; Gao, W.; Yu, W.; Li, Z.; Du, M. A parameterization scheme of aerosol vertical distribution for surface-level visibility retrieval from satellite remote sensing. Remote Sens. Environ. 2016, 181, 1–13. [Google Scholar] [CrossRef]
- Rozwadowska, A. Influence of aerosol vertical profile variability on retrievals of aerosol optical thickness from NOAA AVHRR measurements in the Baltic region. Oceanologia 2007, 49, 165–184. [Google Scholar]
- Wilson, R.T.; Milton, E.J.; Nield, J.M. Are visibility-derived AOT estimates suitable for parameterizing satellite data atmospheric correction algorithms? Int. J. Remote Sens. 2015, 36, 1675–1688. [Google Scholar] [CrossRef] [Green Version]
- Koschmieder, H. Theorie der Horizontalen Sichtweite. Beitr. Phys. Frei. Atmos. 1924, 12, 33–53. [Google Scholar]
- Kessner, A.L.; Wang, J.; Levy, R.C.; Colarco, P.R. Remote sensing of surface visibility from space: A look at the United States East Coast. Atmos. Environ. 2013, 81, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Bilal, M.; Nazeer, M.; Nichol, J.E. Validation of MODIS and VIIRS derived aerosol optical depth over complex coastal waters. Atmos. Res. 2017, 186, 43–50. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E.; Chan, P.W. Validation and accuracy assessment of a Simplified Aerosol Retrieval Algorithm (SARA) over Beijing under low and high aerosol loadings and dust storms. Remote Sens. Environ. 2014, 153, 50–60. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E. Evaluation of MODIS aerosol retrieval algorithms over the Beijing-Tianjin-Hebei region during low to very high pollution events. J. Geophys. Res. Atmos. 2015, 120, 7941–7957. [Google Scholar] [CrossRef] [Green Version]
- Toth, T.D.; Zhang, J.; Campbell, J.R.; Hyer, E.J.; Reid, J.S.; Shi, Y.; Westphal, D.L. Impact of data quality and surface-to-column representativeness on the PM2.5/satellite AOD relationship for the contiguous United States. Atmos. Chem. Phys. 2014, 14, 6049–6062. [Google Scholar] [CrossRef] [Green Version]
- Mui, K.W.; Wong, L.T.; Chung, L.Y. Mathematical models for accurate prediction of atmospheric visibility with particular reference to the seasonal and environmental patterns in Hong Kong. Environ. Monit. Assess. 2009, 158, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Diner, D.J.; Beckert, J.C.; Reilly, T.H.; Bruegge, C.J.; Conel, J.E.; Kahn, R.A.; Martonchik, J.V.; Ackerman, T.P.; Davies, R.; Gerstl, S.A.W.; et al. Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1072–1087. [Google Scholar] [CrossRef]
- Torres, O. Total Ozone Mapping Spectrometer measurements of aerosol absorption from space: Comparison to SAFARI 2000 ground-based observations. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO Mission: A Global 3D View of Aerosols and Clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1229. [Google Scholar] [CrossRef]
- Livingston, J.M.; Redemann, J.; Russell, P.B.; Torres, O.; Veihelmann, B.; Veefkind, P.; Braak, R.; Smirnov, A.; Remer, L.; Bergstrom, R.W.; et al. Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI) on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B. Atmos. Chem. Phys. 2009, 9, 6743–6765. [Google Scholar] [CrossRef] [Green Version]
- Kahn, R.A. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.H.; Winker, D.M.; Tackett, J.L.; Giles, D.M.; Kar, J.; Liu, Z.; Vaughan, M.A.; Powell, K.A.; Trepte, C.R. CALIOP and AERONET aerosol optical depth comparisons: One size fits none. J. Geophys. Res. Atmos. 2013, 118, 4748–4766. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.S.; Nichol, J.; Lee, K.H.; Li, Z. A New Algorithm for Retrieving Aerosol Optical Thickness Using TERRA/MODIS Satellite Images. Geogr. Inf. Sci. 2008, 14, 86–91. [Google Scholar] [CrossRef]
- Zhang, Q.; Ning, Z.; Shen, Z.; Li, G.; Zhang, J.; Lei, Y.; Xu, H.; Sun, J.; Zhang, L.; Westerdahl, D.; et al. Variations of aerosol size distribution, chemical composition and optical properties from roadside to ambient environment: A case study in Hong Kong, China. Atmos. Environ. 2017, 166, 234–243. [Google Scholar] [CrossRef]
- Du, K.; Mu, C.; Deng, J.; Yuan, F. Study on atmospheric visibility variations and the impacts of meteorological parameters using high temporal resolution data: An application of Environmental Internet of Things in China. Int. J. Sustain. Dev. World Ecol. 2013, 20, 238–247. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; ISBN 9780471720188. [Google Scholar]
- Chang, D.; Song, Y.; Liu, B. Visibility trends in six megacities in China 1973–2007. Atmos. Res. 2009, 94, 161–167. [Google Scholar] [CrossRef]
- Lee, Y.C.; Savtchenko, A.; Council, G.; Kong, H. Relationship between air pollution in Hong Kong and in the Pearl River Delta region of South China 2003 and 2004: An analysis. J. Appl. Meteorol. Climatol. 2006, 45, 269–282. [Google Scholar] [CrossRef]
- Zhou, W.; Li, R.C.Y.; Chow, E.C.H.; Zhou, W.; Li, R.C.Y. Intraseasonal Variation of Visibility in Hong Kong. Adv. Atmos. Sci. 2017, 34, 26–38. [Google Scholar] [CrossRef]
- Wu, D.; Tie, X.; Li, C.; Ying, Z.; Lau, A.K.-H.; Huang, J.; Deng, X.; Bi, X. An extremely low visibility event over the Guangzhou region: A case study. Atmos. Environ. 2005, 39, 6568–6577. [Google Scholar] [CrossRef]
- Campbell, J.R.; Reid, J.S.; Westphal, D.L.; Zhang, J.; Tackett, J.L.; Chew, B.N.; Welton, E.J.; Shimizu, A.; Sugimoto, N.; Aoki, K.; et al. Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the Maritime Continent: The 2007–2009 view from CALIOP. Atmos. Res. 2013, 122, 520–543. [Google Scholar] [CrossRef]
- Ichoku, C.; Chu, D.A.; Mattoo, S.; Kaufman, Y.J.; Remer, L.A.; Tanré, D.; Slutsker, I.; Holben, B.N. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett. 2002, 29, MOD1-1–MOD1-4. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. A Test of Goodness of Fit. J. Am. Stat. Assoc. 1954, 49, 765–769. [Google Scholar] [CrossRef]
- Durbin, J.; Watson, G.S. Testing for serial correlation in least squares regression. III. Biometrika 1971, 58, 1–19. [Google Scholar] [CrossRef]
- Lin, M.; Tao, J.; Chan, C.-Y.; Cao, J.-J.; Zhang, Z.-S.; Zhu, L.-H.; Zhang, R.-J. Regression Analyses between Recent Air Quality and Visibility Changes in Megacities at Four Haze Regions in China. Aerosol Air Qual. Res. 2012, 12, 1049–1061. [Google Scholar] [CrossRef]
- Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Falkowski, M.J.; Smith, A.M.; Gessler, P.E.; Morgan, P. Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral satellite data. Can. J. Remote Sens. 2006, 32, 126–138. [Google Scholar] [CrossRef]
- Mallows, C.L. Some Comments on CP. Technometrics 1973, 15, 661–675. [Google Scholar]
- Curier, R.L.; Veefkind, J.P.; Braak, R.; Veihelmann, B.; Torres, O.; de Leeuw, G. Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: Application to western Europe. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Min, M.; Wang, P.; Campbell, J.R.; Zong, X.; Li, Y. Midlatitude cirrus cloud radiative forcing over China. J. Geophys. Res. 2010, 115, D20210. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Ahmad, Z.; Gleason, J. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res. 1998, 103, 17099–17110. [Google Scholar] [CrossRef] [Green Version]
- Hidy, G.; Hoff, R.; Christopher, S.; Sharma, P.; Poulsen, T.; Kalluri, P.; Hoff, S.; Bundy, D.; Nelson, M.; Zelle, B.; et al. The A&WMA 2009 Critical Review—Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land? J. Air Waste Manag. Assoc. 2009, 59, 645–675. [Google Scholar] [CrossRef]
- Kacenelenbogen, M.; Vaughan, M.A.; Redemann, J.; Hoff, R.M.; Rogers, R.R.; Ferrare, R.A.; Russell, P.B.; Hostetler, C.A.; Hair, J.W.; Holben, B.N. An accuracy assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol extinction product based on a detailed multi-sensor, multi-platform case study. Atmos. Chem. Phys. 2011, 11, 3981. [Google Scholar] [CrossRef]
- Liu, J.; Xia, X.; Li, Z.; Wang, P.; Min, M.; Hao, W.; Wang, Y.; Xin, J.; Li, X.; Zheng, Y.; et al. Validation of multi-angle imaging spectroradiometer aerosol products in China. Tellus B Chem. Phys. Meteorol. 2010, 62, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Liu, Y.; Yu, B.; Jiang, M. Comparison of MISR aerosol optical thickness with AERONET measurements in Beijing metropolitan area. Remote Sens. Environ. 2007, 107, 45–53. [Google Scholar] [CrossRef]
- Kahn, R.; Banerjee, P.; McDonald, D. Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean. J. Geophys. Res. 2001, 106, 18219–18238. [Google Scholar] [CrossRef] [Green Version]
- Lai, L.Y.; Sequeira, R. Visibility degradation across Hong Kong: Its components and their relative contributions. Atmos. Environ. 2001, 35, 5861–5872. [Google Scholar] [CrossRef]
- Wan, J.-M.; Lin, M.; Chan, C.-Y.; Zhang, Z.-S.; Engling, G.; Wang, X.-M.; Chan, I.-N.; Li, S.-Y. Change of air quality and its impact on atmospheric visibility in central-western Pearl River Delta. Environ. Monit. Assess. 2011, 172, 339–351. [Google Scholar] [CrossRef] [PubMed]
Source | Spatial Resolution | Wavelength (nm) | Temporal Resolution |
---|---|---|---|
MODIS | 10 km | 550 | Daily |
MISR | 17.6 km | 558 | 7–9 days |
CALIOP | 5 km | 532 | 16 Day |
OMAERO | 27.8 km | 342 | Daily |
VR | (VR)−1 | (VR)2 | (VR)1/2 | ln(VR) | Bext | ln(Bext) | (Bext)1/2 | (Bext)−1 | (Bext)2 | |
---|---|---|---|---|---|---|---|---|---|---|
AOD | −0.74 | 0.78 | −0.66 | −0.76 | −0.78 | 0.78 | 0.78 | 0.78 | −0.74 | 0.74 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
T | 0.12 | −0.08 | 0.13 | 0.11 | 0.10 | −0.08 | −0.10 | −0.09 | 0.12 | −0.07 |
0.09 | 0.23 | 0.06 | 0.12 | 0.15 | 0.23 | 0.15 | 0.19 | 0.09 | 0.31 | |
P | −0.11 | 0.05 | −0.13 | −0.09 | −0.08 | 0.05 | 0.08 | 0.07 | −0.11 | 0.03 |
0.13 | 0.46 | 0.07 | 0.18 | 0.26 | 0.46 | 0.26 | 0.35 | 0.13 | 0.66 | |
RH | −0.08 | 0.16 | −0.04 | −0.10 | −0.13 | 0.16 | 0.13 | 0.15 | −0.08 | 0.19 |
0.25 | 0.02 | 0.57 | 0.14 | 0.07 | 0.02 | 0.07 | 0.04 | 0.25 | 0.01 | |
MLH | 0.01 | −0.07 | −0.02 | 0.03 | 0.04 | −0.07 | −0.04 | −0.05 | 0.01 | −0.08 |
0.88 | 0.35 | 0.81 | 0.72 | 0.57 | 0.35 | 0.57 | 0.44 | 0.88 | 0.26 | |
UT | −0.15 | 0.18 | −0.13 | −0.16 | −0.17 | 0.18 | 0.17 | 0.18 | −0.15 | 0.18 |
0.03 | 0.01 | 0.06 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.03 | 0.01 | |
VT | 0.21 | −0.18 | 0.21 | 0.21 | 0.20 | −0.18 | −0.20 | −0.19 | 0.22 | −0.14 |
0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.04 | |
Q | 0.11 | −0.02 | 0.15 | 0.09 | 0.07 | −0.03 | −0.07 | −0.05 | 0.11 | 0.01 |
0.11 | 0.73 | 0.03 | 0.20 | 0.33 | 0.73 | 0.33 | 0.52 | 0.11 | 0.91 | |
U | −0.17 | 0.20 | −0.14 | −0.18 | −0.19 | 0.20 | 0.19 | 0.19 | −0.17 | 0.20 |
0.02 | 0.00 | 0.05 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.02 | 0.00 | |
V | 0.18 | −0.15 | 0.18 | 0.18 | 0.17 | −0.15 | −0.17 | −0.16 | 0.18 | −0.13 |
0.01 | 0.03 | 0.01 | 0.01 | 0.01 | 0.03 | 0.01 | 0.02 | 0.01 | 0.07 | |
WD | 0.02 | 0.03 | 0.05 | 0.01 | 0.00 | 0.03 | 0.00 | 0.02 | 0.02 | 0.05 |
0.73 | 0.66 | 0.49 | 0.88 | 0.96 | 0.66 | 0.96 | 0.80 | 0.73 | 0.44 | |
WS | 0.00 | −0.06 | −0.01 | 0.02 | 0.03 | −0.06 | −0.03 | −0.05 | 0.00 | −0.10 |
0.95 | 0.36 | 0.87 | 0.82 | 0.67 | 0.36 | 0.67 | 0.51 | 0.96 | 0.15 | |
ln(AOD) | −0.79 | 0.74 | −0.76 | −0.80 | −0.79 | 0.74 | 0.79 | 0.77 | −0.79 | 0.67 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
ln(RH) | −0.09 | 0.16 | −0.05 | −0.11 | −0.13 | 0.16 | 0.13 | 0.15 | −0.09 | 0.19 |
0.21 | 0.02 | 0.50 | 0.12 | 0.06 | 0.02 | 0.06 | 0.03 | 0.21 | 0.01 | |
(T)2 | 0.14 | −0.09 | 0.15 | 0.13 | 0.11 | −0.09 | −0.11 | −0.10 | 0.14 | −0.08 |
0.05 | 0.18 | 0.03 | 0.07 | 0.10 | 0.18 | 0.10 | 0.14 | 0.05 | 0.27 | |
(P)2 | −0.11 | 0.05 | −0.13 | −0.09 | −0.08 | 0.05 | 0.08 | 0.07 | −0.11 | 0.03 |
0.13 | 0.46 | 0.07 | 0.18 | 0.26 | 0.46 | 0.26 | 0.35 | 0.13 | 0.67 | |
(Q)2 | 0.16 | −0.06 | 0.20 | 0.14 | 0.11 | −0.06 | −0.11 | −0.09 | 0.16 | −0.02 |
0.02 | 0.39 | 0.00 | 0.05 | 0.11 | 0.39 | 0.11 | 0.22 | 0.02 | 0.79 |
Model | Const | UT | VT | U | V | ln(AOD) | ln(RH) | (T)2 | (P)2 | (Q)2 | S | R2 | R2adj | PRESS | R2pred | SS | F | DWS | Largest VIF | Cp |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Full | ns | ns | ns | ns | ns | **** | **** | ns | ns | *** | 0.34 | 72.38 | 70.97 | 24.33 | 69.50 | 57.74 | 51.37 | 1.69 | 68.52 | x |
A | ns | ns | ns | * | ns | **** | **** | x | ns | **** | 0.33 | 72.34 | 71.07 | 24.09 | 69.79 | 57.71 | 57.24 | 1.69 | 65.43 | x |
B | **** | * | ns | * | ns | **** | **** | x | x | **** | 0.33 | 72.31 | 71.20 | 23.84 | 70.11 | 57.69 | 64.65 | 1.68 | 66.73 | x |
C | **** | ** | *** | ** | **** | **** | x | x | **** | 0.33 | 71.79 | 70.94 | 23.91 | 70.03 | 57.26 | 84.82 | 1.66 | 35.28 | x | |
D | **** | x | *** | ns | **** | **** | x | x | **** | 0.33 | 71.21 | 70.49 | 24.20 | 69.64 | 56.81 | 99.40 | 1.66 | 1.62 | x | |
E | **** | x | **** | x | **** | **** | x | x | **** | 0.33 | 71.10 | 70.53 | 24.07 | 69.83 | 56.71 | 124.20 | 1.67 | 1.62 | x | |
Stepwise | **** | x | **** | x | **** | **** | x | x | **** | 0.33 | 71.10 | 70.53 | 24.01 | 69.83 | x | x | x | x | 5 | |
Best Subset | **** | x | **** | x | **** | **** | x | x | **** | 0.33 | 71.10 | 70.53 | x | x | x | x | x | x | 5 |
Test | HKO VR (km) | MODIS VR (km) |
---|---|---|
Total observations | 95 | 95 |
Mean | 12.25 | 12.10 |
Standard Error | 0.51 | 0.40 |
Median | 12.00 | 12.18 |
Maximum | 25.00 | 21.93 |
Minimum | 3.20 | 4.64 |
Standard Deviation | 0.33 | 0.49 |
First Quartile | 9.00 | 9.08 |
Third Quartile | 15.00 | 14.87 |
Dependent Variable | Independent Variables | R2 | |
---|---|---|---|
Lai and Sequeira [64] | Bext | NO2, RSP, RH | 0.76 |
Du et al. [43] | VR | RH, WS, P, T, Prec. | 0.39 |
Mui et al. [33] | VR | T, API | 0.77 |
Lin et al. [53] | VR | PM10, NO2, RH | 0.80 |
Wan et al. [65] | VR | SO2, NO2, PM10 | 0.51 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzad, M.I.; Nichol, J.E.; Campbell, J.R.; Wong, M.S. Assessment of MODIS, OMI, MISR and CALIOP Aerosol Products for Estimating Surface Visual Range: A Mathematical Model for Hong Kong. Remote Sens. 2018, 10, 1333. https://doi.org/10.3390/rs10091333
Shahzad MI, Nichol JE, Campbell JR, Wong MS. Assessment of MODIS, OMI, MISR and CALIOP Aerosol Products for Estimating Surface Visual Range: A Mathematical Model for Hong Kong. Remote Sensing. 2018; 10(9):1333. https://doi.org/10.3390/rs10091333
Chicago/Turabian StyleShahzad, Muhammad Imran, Janet Elizabeth Nichol, James R. Campbell, and Man Sing Wong. 2018. "Assessment of MODIS, OMI, MISR and CALIOP Aerosol Products for Estimating Surface Visual Range: A Mathematical Model for Hong Kong" Remote Sensing 10, no. 9: 1333. https://doi.org/10.3390/rs10091333
APA StyleShahzad, M. I., Nichol, J. E., Campbell, J. R., & Wong, M. S. (2018). Assessment of MODIS, OMI, MISR and CALIOP Aerosol Products for Estimating Surface Visual Range: A Mathematical Model for Hong Kong. Remote Sensing, 10(9), 1333. https://doi.org/10.3390/rs10091333