Next Article in Journal
Estimation of Surface Duct Using Ground-Based GPS Phase Delay and Propagation Loss
Previous Article in Journal
Speckle Suppression by Weighted Euclidean Distance Anisotropic Diffusion
Open AccessArticle

An Estimate of the Pixel-Level Connection between Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB) Nighttime Lights and Land Features across China

by Ting Ma 1,2,3
1
State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
3
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Remote Sens. 2018, 10(5), 723; https://doi.org/10.3390/rs10050723
Received: 16 April 2018 / Revised: 24 April 2018 / Accepted: 3 May 2018 / Published: 8 May 2018
Satellite-derived nighttime light images are increasingly used for various studies in relation to demographic, socioeconomic and urbanization dynamics because of the salient relationships between anthropogenic lighting signals at night and statistical variables at multiple scales. Owing to a higher spatial resolution and fewer over-glow and saturation effects, the new generation of nighttime light data derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band (DNB), which is located on board the Suomi National Polar-Orbiting Partnership (Suomi-NPP) satellite, is expected to facilitate the performance of nocturnal luminosity-based investigations of human activity in a spatially explicit manner. In spite of the importance of the spatial connection between the VIIRS DNB nighttime light radiance (NTL) and the land surface type at a fine scale, the crucial role of NTL-based investigations of human settlements is not well understood. In this study, we investigated the pixel-level relationship between the VIIRS DNB-derived NTL, a Landsat-derived land-use/land-cover dataset, and the map of point of interest (POI) density over China, especially with respect to the identification of artificial surfaces in urban land. Our estimates suggest that notable differences in the NTL between urban (man-made) surfaces and other types of land surfaces likely allow us to spatially identify most of the urban pixels with relatively high radiance values in VIIRS DNB images. Our results also suggest that current nighttime light data have a limited capability for detecting rural residential areas and explaining pixel-level variations in the POI density at a large scale. Moreover, the impact of non-man-made surfaces on the partitioned results appears inevitable because of the spatial heterogeneity of human settlements and the nature of remotely sensed nighttime light data. Using receiver operating characteristic (ROC) curve-based analysis, we obtained optimal thresholds of the nighttime light radiance, by equally weighting the sensitivity and specificity of the identification results, for extracting the nationwide distribution of lighted urban man-made pixels from the 2015 annual composite of VIIRS DNB data. Our findings can provide the basic knowledge needed for the further application of current nighttime light data to investigate spatiotemporal patterns in human settlements. View Full-Text
Keywords: nighttime light; VIIRS DNB; land-use/land-cover; artificial surfaces; optimal threshold nighttime light; VIIRS DNB; land-use/land-cover; artificial surfaces; optimal threshold
Show Figures

Graphical abstract

MDPI and ACS Style

Ma, T. An Estimate of the Pixel-Level Connection between Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB) Nighttime Lights and Land Features across China. Remote Sens. 2018, 10, 723.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop