In-Flight Retrieval of SCIAMACHY Instrument Spectral Response Function
Abstract
1. Introduction
2. Materials and Methods
2.1. Background
2.2. Fitting the ISRF
2.3. SCIAMACHY Solar Measurements
3. Results
4. Discussion
4.1. The ISRF in the UV/VIS Channels
4.2. The ISRF in the NIR Channels
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Noël, S.; Bramstedt, K.; Bovensmann, H.; Gerilowski, K.; Burrows, J.P.; Standfuss, C.; Dufour, E.; Veihelmann, B. Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals. Atmos. Meas. Tech. 2012, 5, 1319–1331. [Google Scholar] [CrossRef]
- De Smedt, I.; Van Roozendael, M.; Stavrakou, T.; Müller, J.-F.; Lerot, C.; Theys, N.; Valks, P.; Hao, N.; van der A, R. Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues. Atmos. Meas. Tech. 2012, 5, 2933–2949. [Google Scholar] [CrossRef]
- Miles, G.M.; Siddans, R.; Kerridge, B.J.; Latter, B.G.; Richards, N.A.D. Tropospheric ozone and ozone profiles retrieved from GOME-2 and their validation. Atmos. Meas. Tech. 2015, 8, 385–398. [Google Scholar] [CrossRef]
- Shah, S.; Tuinder, O.; van Peet, J.; de Laat, A.; Stammes, P. Nadir ozone profile retrieval from SCIAMACHY and its application to the Antarctic ozone hole in the period 2003–2011. Atmos. Meas. Tech. Discuss. 2017. [Google Scholar] [CrossRef]
- Bovensmann, H.; Burrows, J.P.; Buchwitz, M.; Frerick, J.; Noël, S.; Rozanov, V.V.; Chance, K.V.; Goede, A.P.H. SCIAMACHY: Mission Objectives and Measurement Modes. J. Atmos. Sci. 1999, 56, 127–150. [Google Scholar] [CrossRef]
- Lichtenberg, G.; Kleipool, Q.; Krijger, J.M.; van Soest, G.; van Hees, R.; Tilstra, L.G.; Acarreta, J.R.; Aben, I.; Ahlers, B.; Bovensmann, H.; et al. SCIAMACHY Level 1 data: calibration concept and in-flight calibration. ACP 2006, 6, 5347–5367. [Google Scholar] [CrossRef]
- Gottwald, M.; Bramstedt, K.; Snel, R.; Krijger, M.; Lichtenberg, G.; Slijkhuis, S.; von Savigny, C.; Noël, S.; Krieg, E. SCIAMACHY In-Orbit Mission Report. In SCIAMACHY Exploring the Changing Earth’s Atmosphere; Gottwald, M., Bovensmann, H., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 77–97. ISBN 978-90-481-9895-5. [Google Scholar]
- Ahlers, B.; Schrijvers, C.; Boslooper, E. Slit Function Comparisons with Level 0 Data. In TPD Space Instrumentation SCIAMACHY TN-014; TNO: Delft, The Netherlands, 2004. [Google Scholar]
- Sun, K.; Liu, X.; Huang, G.; González Abad, G.; Cai, Z.; Chance, K.; Yang, K. Deriving the slit functions from OMI solar observations and its implications for ozone-profile retrieval. Atmos. Meas. Tech. 2017, 10, 3677–3695. [Google Scholar] [CrossRef]
- Sun, K.; Liu, X.; Nowlan, C.R.; Cai, Z.; Chance, K.; Frankenberg, C.; Lee, R.A.M.; Pollock, R.; Rosenberg, R.; Crisp, D. Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements. Atmos. Meas. Tech. 2017, 10, 939–953. [Google Scholar] [CrossRef]
- Chance, K.; Kurucz, R.L. An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared. JQSRT 2010, 111, 1289–1295. [Google Scholar] [CrossRef]
- Wallace, L.; Livingston, W.; Hinkle, K.; Bernath, P. Infrared Spectral Atlases of the Sun from NOAO. ApJS 1996, 106. [Google Scholar] [CrossRef]
- Beirle, S.; Lampel, J.; Lerot, C.; Sihler, H.; Wagner, T. Parameterizing the instrumental spectral response function and its changes by a super-Gaussian and its derivatives. Atmos. Meas. Tech. 2017, 10, 581–598. [Google Scholar] [CrossRef]
- Kleipool, Q.L.; Jongma, R.T.; Gloudemans, A.M.S.; Schrijver, H.; Lichtenberg, G.F.; van Hees, R.M.; Maurellis, A.N.; Hoogeveen, R.W.M. In-flight proton-induced radiation damage to SCIAMACHY’s extended-wavelength InGaAs near-infrared detectors. Infrared Phys. Technol. 2007, 50, 30–37. [Google Scholar] [CrossRef]
- Gottwald, M.; Krieg, E.; Lichtenberg, G.; Noël, S.; Bramstedt, K.; Bovensmann, H.; Snel, R.; Krijger, M. SCIAMACHY In-Orbit Operations and Performance; SCIAMACHY Mission Documents; Springer: Berlin, Germany, 2016; PO-TN-DLR-SH-0034; Available online: https://atmos.eoc.dlr.de/projects/scops/ (accessed on 1 May 2016).
- Lichtenberg, G. Some Results on Ice and the IR Transmission in SCIAMACHY; SRON-EOS/RP/03-003; SRON: Utrecht, The Netherlands, 2003. [Google Scholar]
Channel Number | Spectral Range (nm) | Spectral Resolution (nm) |
---|---|---|
1 | 214–334 | 0.24 |
2 | 300–412 | 0.26 |
3 | 383–628 | 0.44 |
4 | 595–812 | 0.48 |
5 | 773–1063 | 0.54 |
6 | 971–1773 | 1.48 |
7 | 1934–2044 | 0.22 |
8 | 2259–2386 | 0.26 |
Channel Number | OPTEC5 Campaign | Commissioning Phase |
---|---|---|
1 | Simple hyperbolic | Simple hyperbolic |
2 | Simple hyperbolic | Simple hyperbolic |
3 | Simple hyperbolic | Simple hyperbolic |
4 | Gaussian | Simple hyperbolic |
5 | Gaussian | Simple hyperbolic |
6 | Gaussian | Gaussian |
8 | Compound hyperbolic | Voigt |
Line ID | Range (nm) | Resolved | Acceptable Fit | |
---|---|---|---|---|
Channel 1 | Line 1 | 277–282.5 | yes | yes |
Line 2 | 283.5–287 | yes | no | |
Line 3 | 301.5–302.7 | yes | no | |
Channel 2 | Line 1 | 330–331.5 | yes | yes |
Line 2 | 391–394.5 | yes | yes | |
Line 3 | 396–398 | yes | yes | |
Channel 3 | Line 1 | 483–488 | yes | yes |
Line 2 | 514–520 | yes | yes | |
Line 3 | 524–530 | yes | yes | |
Line 4 | 531–535 | yes | yes | |
Channel 4 | Line 1 | 654–659 | yes | yes |
Line 2 | 760–764 | partially | - | |
Line 3 | 804–806.5 | no | - | |
Channel 5 | Line 1 | 853–856.5 | yes | yes |
Line 2 | 837–842 | no | - | |
Line 3 | 865–868.5 | yes | yes | |
Line 4 | 880–884 | yes | yes | |
Line 5 | 940–943.5 | partially | - | |
Channel 6 | Line 1 | 1590–1600 | partially | - |
Line 2 | 1635.5–1650 | no | - | |
Line 3 | 1668–1675 | no | - | |
Line 4 | 1193–1215 | yes | yes | |
Line 5 | 1565–1581 | yes | yes | |
Line 6 | 1705–1717 | partially | - | |
Channel 8 | Line 1 | 2280.5–2282.2 | partially | (yes) |
Fitted Analytical Function | Solar Line | Time Averaged FWHM (nm) | |
---|---|---|---|
Channel 1 | Hyperbolic | 277–282.5 | 0.25 ± 0.004 |
Channel 2 | Hyperbolic | 330–331.5 | 0.24 ± 0.004 |
391–394.5 | 0.25 ± 0.005 | ||
396–398 | 0.26 ± 0.004 | ||
Channel 3 | Gaussian | 483–488 | 0.448 ± 0.01 |
514–520 | 0.436 ± 0.01 | ||
524–530 | 0.43 ± 0.01 | ||
531–535 | 0.44 ± 0.01 | ||
Channel 4 | Hyperbolic | 654–659 | 0.426 ± 0.01 |
Channel 5 | Hyperbolic | 853–856.5 | 0.574 ± 0.01 |
865–868.5 | 0.554 ± 0.01 | ||
880–884 | 0.537 ± 0.01 | ||
Channel 6 | Hyperbolic | 1193–1215 | 1.468 ± 0.03 |
1565–1581 | 1.34 ± 0.03 | ||
Channel 8 | (Compound hyperbolic) | 2280.5–2282.2 | (>0.3) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamidouche, M.; Lichtenberg, G. In-Flight Retrieval of SCIAMACHY Instrument Spectral Response Function. Remote Sens. 2018, 10, 401. https://doi.org/10.3390/rs10030401
Hamidouche M, Lichtenberg G. In-Flight Retrieval of SCIAMACHY Instrument Spectral Response Function. Remote Sensing. 2018; 10(3):401. https://doi.org/10.3390/rs10030401
Chicago/Turabian StyleHamidouche, Mourad, and Günter Lichtenberg. 2018. "In-Flight Retrieval of SCIAMACHY Instrument Spectral Response Function" Remote Sensing 10, no. 3: 401. https://doi.org/10.3390/rs10030401
APA StyleHamidouche, M., & Lichtenberg, G. (2018). In-Flight Retrieval of SCIAMACHY Instrument Spectral Response Function. Remote Sensing, 10(3), 401. https://doi.org/10.3390/rs10030401