Ship Detection in Optical Remote Sensing Images Based on Saliency and a Rotation-Invariant Descriptor
Abstract
:1. Introduction
- The high variability of targets caused by the viewpoint variation, imaging sensor parameters, occlusion, ship wakes, color, speed, and material of ships, etc.
- High false alarm rate due to islands, heavy clouds, ocean waves, and the various and uncertain sea state conditions, like partial cloud cover, fog, wind, and swell.
- The third issue is the computation burden. Most detection methods have high computational cost. Hence, reducing computational cost is considered to be a key issue for the large-scale remote sensing images.
2. Ship Candidate Extraction Based on Saliency
2.1. The Proposed Saliency Model
2.2. Target Candidates Extraction
3. Ship Discrimination
3.1. Rotation-Invariant Global Gradient Descriptor
3.2. Region Covariance Descriptor
- It provides nonlinear integration of different features through modeling its correlations.
- Due to the low-dimensional representations of the patches, it captures local structures better than linear filters.
- It is insensitive to the large rotations and the illumination changes.
3.3. Gaussian SVM
4. Experimental Results and Discussion
4.1. Data Set
4.2. Comparison to the State-of-the-Art Saliency Model
- Our model can distinguish different ship targets even when they are very close to each other.
- It can identify both large and small ships and highlight the entire ship target regions.
- It can suppress the interference from the complex backgrounds such as cloud, fog and sea clutter.
4.3. Discrimination Results
4.4. Comparison of Overall Detection Performances
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mirghasemi, S.; Yazdi, H.S.; Lotfizad, M. A target-based color space for sea target detection. Appl. Intell. 2012, 36, 960–978. [Google Scholar] [CrossRef]
- Zhu, C.R.; Zhou, H.; Wang, R.S.; Guo, J. A Novel Hierarchical Method of Ship Detection from Spaceborne Optical Image Based on Shape and Texture Features. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3446–3456. [Google Scholar] [CrossRef]
- Yang, G.; Li, B.; Ji, S.F.; Gao, F.; Xu, Q.Z. Ship Detection From Optical Satellite Images Based on Sea Surface Analysis. IEEE Geosci. Remote Sens. Lett. 2014, 11, 641–645. [Google Scholar] [CrossRef]
- Proia, N.; Page, V. Characterization of a Bayesian Ship Detection Method in Optical Satellite Images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 226–230. [Google Scholar] [CrossRef]
- Shi, Z.W.; Yu, X.R.; Jiang, Z.G.; Li, B. Ship Detection in High-Resolution Optical Imagery Based on Anomaly Detector and Local Shape Feature. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4511–4523. [Google Scholar]
- Han, J.; Zhang, D.; Cheng, G.; Guo, L.; Ren, J. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3325–3337. [Google Scholar] [CrossRef]
- Zou, Z.X.; Shi, Z.W. Ship Detection in Spaceborne Optical Image with SVD Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5832–5845. [Google Scholar] [CrossRef]
- Tang, J.X.; Deng, C.W.; Huang, G.B.; Zhao, B.J. Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1174–1185. [Google Scholar] [CrossRef]
- Lin, H.N.; Shi, Z.W.; Zou, Z.X. Maritime Semantic Labeling of Optical Remote Sensing Images with Multi-Scale Fully Convolutional Network. Remote Sens. 2017, 9, 480. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef]
- Harel, J.; Koch, C.; Perona, P. Graph-based visual saliency. Adv. Neural Inf. Process. Syst. 2006, 19, 545–552. [Google Scholar]
- Bi, F.K.; Zhu, B.C.; Gao, L.N.; Bian, M.M. A Visual Search Inspired Computational Model for Ship Detection in Optical Satellite Images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 749–753. [Google Scholar]
- Guo, W.; Xia, X.; Wang, X. A remote sensing ship recognition method based on dynamic probability generative model. Expert Syst. Appl. 2014, 41, 6446–6458. [Google Scholar] [CrossRef]
- Hou, X.D.; Zhang, L.Q. Saliency Detection: A Spectral Residual Approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 2280–2287. [Google Scholar]
- Qi, S.X.; Ma, J.; Lin, J.; Li, Y.S.; Tian, J.W. Unsupervised Ship Detection Based on Saliency and S-HOG Descriptor from Optical Satellite Images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1451–1455. [Google Scholar]
- Xu, F.; Liu, J.H.; Sun, M.C.; Zeng, D.D.; Wang, X. A Hierarchical Maritime Target Detection Method for Optical Remote Sensing Imagery. Remote Sens. 2017, 9, 280. [Google Scholar] [CrossRef]
- Achanta, R.; Hemami, S.; Estrada, F.; Suesstrunk, S. Frequency-Tuned Salient Region Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, USA, 20–25 June 2009; pp. 1597–1604. [Google Scholar]
- Wang, H.L.; Zhu, M.; Lin, C.B.; Chen, D.B. Ship detection in optical remote sensing image based on visual saliency and AdaBoost classifier. Optoelectron. Lett. 2017, 13, 151–155. [Google Scholar] [CrossRef]
- Takacs, G.; Chandrasekhar, V.; Tsai, S.; Chen, D.; Grzeszczuk, R.; Girod, B. Unified Real-Time Tracking and Recognition with Rotation-Invariant Fast Features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 934–941. [Google Scholar]
- Hong, X.P.; Chang, H.; Shan, S.G.; Chen, X.L.; Gao, W. Sigma Set: A Small Second Order Statistical Region Descriptor. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, USA, 20–25 June 2009; pp. 1802–1809. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Wang, X.L.; Chen, C.X. Adaptive ship detection in SAR images using variance WIE-based method. Signal Image Video Process. 2016, 10, 1219–1224. [Google Scholar] [CrossRef]
- Cao, Z.J.; Ge, Y.C.; Feng, J.L. Fast target detection method for high-resolution SAR images based on variance weighted information entropy. EURASIP J. Adv. Signal Process. 2014, 1, 45. [Google Scholar] [CrossRef]
- Leng, X.G.; Ji, K.F.; Zhou, S.L.; Xing, X.W.; Zou, H.X. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery. Sensors 2016, 16, 1345. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Lu, H.C.; Xu, Y.Q.; Wang, H. Saliency Detection via Cellular Automata. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 110–119. [Google Scholar]
- Wang, Y.H.; Liu, H.W. A Hierarchical Ship Detection Scheme for High-Resolution SAR Images. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4173–4184. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.W. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 117, 11–28. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemometr. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cyber. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 886–893. [Google Scholar]
- Liu, K.; Skibbe, H.; Schmidt, T.; Blein, T.; Palme, K.; Brox, T.; Ronneberger, O. Rotation-Invariant HOG Descriptors Using Fourier Analysis in Polar and Spherical Coordinates. Int. J. Comput. Vis. 2014, 106, 342–364. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, P.C.; Han, J.W. Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [Google Scholar] [CrossRef]
- Tuzel, O.; Porikli, F.; Meer, P. Region Covariance: A Fast Descriptor for Detection and Classification. In Proceedings of the European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 589–600. [Google Scholar]
Method | Proposed | GBVS | COV | Itti | SR |
---|---|---|---|---|---|
Time(s) | 0.6 | 1.1 | 19 | 0.9 | 0.08 |
Code | M | M&C++ | M | M&C++ | M |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.; Liu, J.; Xu, F. Ship Detection in Optical Remote Sensing Images Based on Saliency and a Rotation-Invariant Descriptor. Remote Sens. 2018, 10, 400. https://doi.org/10.3390/rs10030400
Dong C, Liu J, Xu F. Ship Detection in Optical Remote Sensing Images Based on Saliency and a Rotation-Invariant Descriptor. Remote Sensing. 2018; 10(3):400. https://doi.org/10.3390/rs10030400
Chicago/Turabian StyleDong, Chao, Jinghong Liu, and Fang Xu. 2018. "Ship Detection in Optical Remote Sensing Images Based on Saliency and a Rotation-Invariant Descriptor" Remote Sensing 10, no. 3: 400. https://doi.org/10.3390/rs10030400
APA StyleDong, C., Liu, J., & Xu, F. (2018). Ship Detection in Optical Remote Sensing Images Based on Saliency and a Rotation-Invariant Descriptor. Remote Sensing, 10(3), 400. https://doi.org/10.3390/rs10030400