Empirical Algorithm for Significant Wave Height Retrieval from Wave Mode Data Provided by the Chinese Satellite Gaofen-3
Abstract
:1. Introduction
2. Description of Data Sets
2.1. GF-3 SAR WM Data
- (1)
- Polarization. Different from the single-polarized WM on ERS-1/2 SAR, Envisat ASAR, and Sentinel-1A/B, GF-3 WM can acquire imagettes in quad-polarization (VV+HH+VH+HV).
- (2)
- Incidence angle. WM imagettes from European SAR satellites are acquired at one or two specific incidence angles. In contrast, although a certain fixed incidence angle was adopted for a specific orbit, the incidence angle could be switched from 20 to 50° for WM on GF-3 for the period of ten months on which we focused. Hence, we categorized the GF-3 WM data into six groups with respect to incidence angle. Here, they are called incidence angle modes of WV01 for 21°–25°, WV02 for 28°–32°, WV03 for 33°–37°, WV04 for 38°–42°, WV05 for 42°–46°, and WV06 for 46°–50°, and details are listed in Table 1.
- (3)
- Geographic distribution. Traditional European SAR WM could monitor swells in the open ocean at a global scale e.g., [4]. However, currently, the GF-3 SAR payload can only work in WM for up to 50 min in one acquisition, owing to power limitations [31]. Thus, as shown in Figure 2, GF-3 WM measurements are not globally distributed for any of the 6 incidence angle modes in the period from January to October 2017.
- (1)
- Homogeneity check. Here, the homogeneity quality control is performed using the parameter of normalized variance () computed from VV-polarized imagettes, defined as the imagette variance normalized with mean intensity:
- (2)
- Ice rejection. For the SAR images acquired in the ice; for instance, Figure 1d presents homogeneous features but should be obviously excluded for our SWH retrieval. Because the check mentioned above fails to reject these cases ( = 1.37 in Figure 1d), we further discarded the GF-3 WM acquisitions in high latitudes (>60°) to avoid sea ice near the polar regions.
2.2. Reference SWH Data
2.2.1. Wavewatch III Hindcast Data
2.2.2. Altimeter SWH Data
2.2.3. Buoy SWH Data
3. Development of Empirical Wave Retrieval Model: QPCWAVE_GF3
3.1. Radar Incidence Angle
3.2. Normalized Radar cross Section (NRCS)
3.3. Image Normalized Variance
3.4. Azimuth Cut-Off, Peak Wavelength and Direction
3.5. Tuning of the Empirical Model QPCWAVE_GF3
3.6. SWH Retrieval Scheme for GF-3 WM Data
4. Algorithm Validation
4.1. Comparison with Independent WW3 Hindcast
4.2. Comparison with Altimeters and Buoys
5. Discussions
5.1. Cross-Polarized NRCS Contribution to SWH Empirical Model
5.2. Case Studies
5.2.1. Case of 31 January 2017 from GF-3 WM Data
5.2.2. Case of 29 October 2017 from GF-3 QPSI Data
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ASAR | Advanced Synthetic Aperture Radar |
COR | CORrelation coefficient |
CWAVE_ENV | C-band WAVE algorithm for ENVisat wave mode |
CWAVE_ERS | C-band WAVE algorithm for ERS wave mode |
CWAVE_S1A | C-band WAVE algorithm for Sentinel-1A wave mode |
DLR | German Aerospace Center |
ECMWF | European Centre for Medium-Range Weather Forecasts |
GF-3 | Gaofen-3 |
GMF | Geophysical Model Function |
IFREMER | Institut Français de Recherche pour l’Exploitation de la Mer |
IOWAGA | Integrated Ocean Waves for Geophysical and other Applications |
NDBC | National Data Buoy Center |
NRCS | Normalized Radar Cross Section |
OLS | Ordinary Least Squares |
QPCWAVE_GF3 | Quad-Polarized C-band WAVE algorithm for GaoFen-3 wave mode |
QPSI | Quad-Polarization Strip I |
RMSE | Root Mean Square Error |
SAR | Synthetic Aperture Radar |
SI | Scatter Index |
SLC | Single Look Complex |
SWH | Significant Wave Height |
UTC | Universal Time Coordinated |
WM | Wave Mode |
WW3 | WaveWatch III |
XWAVE | X-band WAVE algorithm |
References
- Hasselmann, K.; Hasselmann, S. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum. J. Geophys. Res. 1991, 96, 10713–10729. [Google Scholar] [CrossRef]
- Pugliese Carratelli, E.; Dentale, F.; Reale, F. Numerical PSEUDO-Random Simulation of SAR Sea and Wind Response. In Advances in SAR Oceanography from Envisat and ERS Missions, Proceedings of the SEASAR 2006 (ESA SP-613), Frascati (RM), Italy, 23–26 January 2006; Lacoste, H., Ed.; ESA Publications Division (ESTEC): Noordwijk, The Netherlands, 2006. [Google Scholar]
- Pugliese Carratelli, E.; Dentale, F.; Reale, F. Reconstruction of SAR Wave Image Effects through Pseudo Random Simulation. In Proceedings of the Envisat Symposium 2007 (ESA SP-636), Montreux, Switzerland, 23–27 April 2007; Lacoste, H., Ouwehand, L., Eds.; ESA Communication Production Office (ESTEC): Noordwijk, The Netherlands, 2007. [Google Scholar]
- Hasselmann, K.; Chapron, B.; Aouf, L.; Ardhuin, F.; Collard, F.; Engen, G.; Hasselmann, S.; Heimbach, P.; Janssen, P.A.E.M.; Johnsen, H.; et al. The ERS SAR wave mode: A breakthrough in global ocean wave observations. In ERS Missions: 20 Years of Observing Earth, 1st ed.; Fletcher, K., Ed.; European Space Agency: Noordwijk, The Netherlands, 2013; pp. 165–198. [Google Scholar]
- Collard, F.; Ardhuin, F.; Chapron, B. Monitoring and analysis of ocean swell fields from space: New methods for routine observations. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Ardhuin, F.; Chapron, B.; Collard, F. Observation of swell dissipation across oceans. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef]
- Ardhuin, F.; Collard, F.; Chapron, B.; Girard-Ardhuin, F.; Guitton, G.; Mouche, A.; Stopa, J.E. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A. Geophys. Res. Lett. 2015, 42, 2317–2325. [Google Scholar] [CrossRef]
- Aouf, L.; Lefevre, J.M.; Hauser, D.; Chapron, B. On the combined assimilation of RA-2 and ASAR wave data for the improvement of wave forecasting. In Proceedings of the 2006 15 Years of Radar Altimetry Symposium, Venice, Italy, 13–18 March 2006. [Google Scholar]
- Li, X.M. A new insight from space into swell propagation and crossing in the global oceans. Geophys. Res. Lett. 2016, 43, 5202–5209. [Google Scholar] [CrossRef]
- Wang, H.; Mouche, A.; Husson, R.; Chapron, B.; Jiang, H. A global distribution of crossing swell from Envisat ASAR Wave Mode data based on swell propagation. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International, Beijing, China, 10–15 July 2016. [Google Scholar]
- Hasselmann, S.; Bruning, C.; Hasselmann, K. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra. J. Geophys. Res. 1996, 101, 6615–6629. [Google Scholar] [CrossRef]
- Schulz-Stellenfleth, J.; Lehner, S.; Hoja, D. A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra. J. Geophys. Res. 2005, 110, 297–314. [Google Scholar] [CrossRef]
- Sun, J.; Kawamura, H. Retrieval of surface wave parameters from SAR images and their validation in the coastal seas around Japan. J. Oceanogr. 2009, 65, 567–577. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.F.; Perrie, W.; He, Y.J. Synergistic measurements of ocean winds and waves from SAR. J. Geophys. Res. 2015, 120, 6164–6184. [Google Scholar] [CrossRef]
- Chapron, B.; Johnsen, H.; Garello, R. Wave and wind retrieval from SAR images of the ocean. Ann. Telecommun. 2001, 56, 682–699. [Google Scholar]
- Stoffelen, A.; Anderson, D. Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res. 1997, 102, 5767–5780. [Google Scholar] [CrossRef]
- Hersbach, H. Comparison of C-band scatterometer CMOD5.N equivalent neutral winds with ECMWF. J. Atmos. Ocean. Tech. 2010, 27, 721–736. [Google Scholar] [CrossRef]
- Stoffelen, A.; Verspeek, J.A.; Vogelzang, J.; Verhoef, A. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 2017, 10, 2123–2134. [Google Scholar] [CrossRef]
- Schulz-Stellenfleth, J.; Konig, T.; Lehner, S. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. J. Geophys. Res. 2007, 112, 1–14. [Google Scholar] [CrossRef]
- Li, X.M.; Lehner, S.; Bruns, T. Ocean wave integral parameter measurements using Envisat ASAR wave mode data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Bruck, M. Sea state measurements using the XWAVE algorithm. Int. J. Remote Sens. 2015, 36, 3890–3912. [Google Scholar] [CrossRef]
- Pleskachevsky, A.L.; Rosenthal, W.; Lehner, S. Meteo-Marine parameters for highly variable environment in coastal regions from satellite radar images. ISPRS J. Photogramm. Remote Sens. 2016, 119, 464–484. [Google Scholar] [CrossRef]
- Stopa, J.E.; Mouche, A.A. Significant wave heights from Sentinel-1 SAR: Validation and applications. J. Geophys. Res. 2017, 122, 1827–1848. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.; Yang, J.S. A semi-empirical algorithm for SAR wave height retrieval and its validation using Envisat ASAR wave mode data. Acta Oceanol. Sin. 2012, 31, 59–66. [Google Scholar]
- Grieco, G.; Lin, W.; Migliaccio, M.; Nirchio, F.; Portabella, M. Dependency of the Sentinel-1 azimuth wavelength cut-off on significant wave height and wind speed. Int. J. Remote Sens. 2016, 37, 5086–5104. [Google Scholar] [CrossRef]
- Shao, W.Z.; Zhang, Z.; Li, X.F.; Li, H. Ocean wave parameters retrieval from Sentinel-1 SAR imagery. Remote Sens. 2016, 8, 707. [Google Scholar] [CrossRef]
- Romeiser, R.; Graber, H.C.; Caruso, M.J.; Jensen, R.E.; Walker, D.T.; Cox, A.T. A new approach to ocean wave parameter estimates from C-band ScanSAR images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1320–1345. [Google Scholar] [CrossRef]
- Ren, L.; Yang, J.S.; Zheng, G.; Wang, J. Significant wave height estimation using azimuth cutoff of C-band RADARSAT-2 single-polarization SAR images. Acta Oceanol. Sin. 2015, 12, 1–9. [Google Scholar] [CrossRef]
- Shao, W.Z.; Wang, J.; Li, X.F.; Sun, J. An Empirical Algorithm for Wave Retrieval from Co-Polarization X-Band SAR Imagery. Remote Sens. 2017, 9, 711. [Google Scholar] [CrossRef]
- Zhang, Q. System Design and Key Technologies of the GF-3 Satellite (in Chinese). Acta Geod. Cartogr. Sin. 2017, 46, 269–277. [Google Scholar] [CrossRef]
- Sun, J.; Yu, W.; Deng, Y. The SAR payload design and performance for the GF-3 mission. Sensors 2017, 17, 2419. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, J.S.; Mouche, A.; Shao, W.Z.; Zhu, J.H.; Ren, L.; Xie, C.H. GF-3 SAR ocean wind retrieval: The first view and preliminary assessment. Remote Sens. 2017, 9, 694. [Google Scholar] [CrossRef]
- Shao, W.Z.; Sheng, Y.X.; Sun, J. Preliminary assessment of wind and wave retrieval from Chinese Gaofen-3 SAR imagery. Sensors 2017, 17, 1705. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.S.; Ren, L.; Wang, J. The first quantitative remote sensing of ocean surface waves by Chinese GF-3 SAR satellite. Oceanol. Limnol. Sin. 2017, 48, 207–209. [Google Scholar] [CrossRef]
- Yang, J.S.; Ren, L.; Wang, J.; Zheng, G.; Li, X. Preliminary retrieval of ocean winds and waves from Chinese newly launched spaceborne microwave sensors. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE International, Forth Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Ren, L.; Yang, J.S.; Mouche, A.; Wang, H.; Wang, J.; Zheng, G.; Zhang, H.G. Preliminary Analysis of Chinese GF-3 SAR Quad-Polarization Measurements to Extract Winds in Each Polarization. Remote Sens. 2017, 9, 1215. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.; Yang, J. Error Analysis on ESA’s Envisat ASAR Wave Mode Significant Wave Height Retrievals Using Triple Collocation Model. Remote Sens. 2014, 6, 12217–12233. [Google Scholar] [CrossRef]
- Stopa, J.E.; Ardhuin, F.; Husson, R.; Jiang, H.; Chapron, B.; Collard, F. Swell dissipation from 10 years of Envisat advanced synthetic aperture radar in wave mode. Geophys. Res. Lett. 2016, 43, 3423–3430. [Google Scholar] [CrossRef]
- Ash, E.; Carter, D.; Collard, F. Deliverable D.16: Satellite Wave Data Quality Report. Available online: https://projets.ifremer.fr/content/download/5120/37286/GlobWave D.16 SWDQR.pdf (accessed on 6 February 2018).
- Johnsen, H. Envisat ASAR Wave Mode Product Description and Reconstruction Procedure. Available online: https://earth.esa.int/c/document_library/get_file?folderId=38042&name=DLFE-662.pdf (accessed on 6 February 2018).
- Husson, R. Development and Validation of a Global Observation-Based Swell Model Using Wave Mode Operating Synthetic Aperture Radar. Ph.D. Thesis, Université de Bretagne Occidentale, Brest, France, 2012. [Google Scholar]
- Rascle, N.; Ardhuin, F. A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Model. 2013, 70, 174–188. [Google Scholar] [CrossRef]
- Liu, Q.; Babanin, A.V.; Guan, C.; Zieger, S.; Sun, J.; Jia, Y. Calibration and validation of HY-2 altimeter wave height. J. Atmos. Ocean. Technol. 2016, 33, 919–936. [Google Scholar] [CrossRef]
- Mouche, A.; Chapron, B. Global C-Band Envisat, RADARSAT-2 and Sentinel-1 SAR measurements in copolarization and cross-polarization. J. Geophys. Res. 2015, 120, 7195–7207. [Google Scholar] [CrossRef]
- Horstmann, J.; Thompson, D.R.; Monaldo, F.; Iris, S.; Graber, H.C. Can synthetic aperture radars be used to estimate hurricane force winds? Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W. Cross-Polarized Synthetic Aperture Radar: A New Potential Measurement Technique for Hurricanes. Bull. Am. Meteorol. Soc. 2012, 93, 531–541. [Google Scholar] [CrossRef]
- Mouche, A.; Chapron, B.; Zhang, B.; Husson, R. Combined Co- and Cross-Polarized SAR Measurements under Extreme Wind Conditions. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6746–6755. [Google Scholar] [CrossRef]
- Zecchetto, S. Wind Direction Extraction from SAR in Coastal Areas. Remote Sens. 2018, 10, 261. [Google Scholar] [CrossRef]
- Kerbaol, V.; Chapron, B.; Vachon, P.W. Analysis of ERS-1/2 synthetic aperture radar wave mode imagettes. J. Geophys. Res. 1998, 103, 7833–7846. [Google Scholar] [CrossRef]
- Stopa, J.E.; Ardhuin, F.; Collard, F.; Chapron, B. Estimating wave orbital velocities through the azimuth cut-off from space borne satellites. J. Geophys. Res. 2015, 120, 7616–7634. [Google Scholar] [CrossRef]
- Engen, G.; Johnsen, H. SAR-ocean wave inversion using image cross spectra. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1047–1056. [Google Scholar] [CrossRef]
ID | Incidence Angle | Number of GF-3 WM Data | |||||
---|---|---|---|---|---|---|---|
Range | Mean | Standard Deviation | Total | Rejected | Tuning | Validation against WW3 | |
WV01 | 21–25° | 22.27° | 1.03° | 988 | 106 | 180 | 702 |
WV02 | 28–32° | 29.92° | 1.02° | 1228 | 188 | 209 | 831 |
WV03 | 33–37° | 35.80° | 0.74° | 4192 | 440 | 748 | 3004 |
WV04 | 38–42° | 41.06° | 0.97° | 4742 | 545 | 836 | 3361 |
WV05 | 42–46° | 44.08° | 1.08° | 1620 | 204 | 284 | 1132 |
WV06 | 46–50° | 47.40° | 1.20° | 1758 | 170 | 319 | 1269 |
WV01 | WV02 | WV03 | WV04 | WV05 | WV06 | |
---|---|---|---|---|---|---|
−3.8082 | −9.0969 | 1.5534 | −19.5166 | −10.4568 | −9.4693 | |
0.0015 | 0.1906 | 0.2429 | 0.1698 | 0.0988 | 0.4062 | |
−0.6635 | −0.8883 | −0.7318 | 0.9653 | −1.5123 | −0.2300 | |
0.0007 | 0.0017 | −0.0024 | 0.0005 | −0.0041 | −0.0021 | |
1.5233 | 5.9697 | −0.1145 | 1.7617 | 1.9145 | 5.9112 | |
−0.2459 | −0.6458 | −0.4577 | −1.2828 | −0.6397 | −1.0020 | |
4.2210 | 11.3454 | 3.6351 | 19.2854 | 14.5511 | 15.8545 | |
0.0012 | 0.0010 | 0.0022 | 0.0002 | 0.0033 | 0.0014 | |
2.0985 | 1.2722 | 1.0585 | −0.3443 | 1.6726 | 0.8500 | |
−0.0110 | 0.0370 | 0.1652 | 0.0616 | 0.0352 | 0.0476 | |
−3.0297 | −5.0699 | 0.8747 | −0.3453 | −3.5451 | −5.5485 | |
0.1713 | 0.3660 | 0.1349 | 0.9692 | 0.5105 | 0.5614 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wang, J.; Yang, J.; Ren, L.; Zhu, J.; Yuan, X.; Xie, C. Empirical Algorithm for Significant Wave Height Retrieval from Wave Mode Data Provided by the Chinese Satellite Gaofen-3. Remote Sens. 2018, 10, 363. https://doi.org/10.3390/rs10030363
Wang H, Wang J, Yang J, Ren L, Zhu J, Yuan X, Xie C. Empirical Algorithm for Significant Wave Height Retrieval from Wave Mode Data Provided by the Chinese Satellite Gaofen-3. Remote Sensing. 2018; 10(3):363. https://doi.org/10.3390/rs10030363
Chicago/Turabian StyleWang, He, Jing Wang, Jingsong Yang, Lin Ren, Jianhua Zhu, Xinzhe Yuan, and Chunhua Xie. 2018. "Empirical Algorithm for Significant Wave Height Retrieval from Wave Mode Data Provided by the Chinese Satellite Gaofen-3" Remote Sensing 10, no. 3: 363. https://doi.org/10.3390/rs10030363
APA StyleWang, H., Wang, J., Yang, J., Ren, L., Zhu, J., Yuan, X., & Xie, C. (2018). Empirical Algorithm for Significant Wave Height Retrieval from Wave Mode Data Provided by the Chinese Satellite Gaofen-3. Remote Sensing, 10(3), 363. https://doi.org/10.3390/rs10030363