Next Article in Journal
The Archaeology and Remote Sensing of Santa Elena’s Four Millennia of Occupation
Previous Article in Journal
Recognition of Wheat Spike from Field Based Phenotype Platform Using Multi-Sensor Fusion and Improved Maximum Entropy Segmentation Algorithms
Open AccessArticle

Remote Sensing of Suspended Sediment Concentrations Based on the Waveform Decomposition of Airborne LiDAR Bathymetry

1
School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
2
Institute of Marine Science and Technology, Wuhan University, Wuhan 430079, China
3
Automation Department, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
4
The Survey Bureau of Hydrology and Water Resources of Yangtze Estuary, Shanghai 200136, China
*
Author to whom correspondence should be addressed.
Remote Sens. 2018, 10(2), 247; https://doi.org/10.3390/rs10020247
Received: 6 January 2018 / Revised: 1 February 2018 / Accepted: 3 February 2018 / Published: 6 February 2018
(This article belongs to the Section Ocean Remote Sensing)
Airborne LiDAR bathymetry (ALB) has been shown to have the ability to retrieve water turbidity using the waveform parameters (i.e., slopes and amplitudes) of volume backscatter returns. However, directly and accurately extracting the parameters of volume backscatter returns from raw green-pulse waveforms in shallow waters is difficult because of the short waveform. This study proposes a new accurate and efficient method for the remote sensing of suspended sediment concentrations (SSCs) in shallow waters based on the waveform decomposition of ALB. The proposed method approaches raw ALB green-pulse waveforms through a synthetic waveform model that comprises a Gaussian function (for fitting the air–water interface returns), triangle function (for fitting the volume backscatter returns), and Weibull function (for fitting the bottom returns). Moreover, the volume backscatter returns are separated from the raw green-pulse waveforms by the triangle function. The separated volume backscatter returns are used as bases to calculate the waveform parameters (i.e., slopes and amplitudes). These waveform parameters and the measured SSCs are used to build two power SSC models (i.e., SSC (C)-Slope (K) and SSC (C)-Amplitude (A) models) at the measured SSC stations. Thereafter, the combined model is formed by the two established C-K and C-A models to retrieve SSCs. SSCs in the modeling water area are retrieved using the combined model. A complete process for retrieving SSCs using the proposed method is provided. The proposed method was applied to retrieve SSCs from an actual ALB measurement performed using the Optech Coastal Zone Mapping and Imaging LiDAR in a shallow and turbid water area. A mean bias of 0.05 mg/L and standard deviation of 3.8 mg/L were obtained in the experimental area using the combined model. View Full-Text
Keywords: airborne LiDAR bathymetry; waveform decomposition; suspended sediment concentration; slope of volume backscatter return; amplitude of volume backscatter return airborne LiDAR bathymetry; waveform decomposition; suspended sediment concentration; slope of volume backscatter return; amplitude of volume backscatter return
Show Figures

Figure 1

MDPI and ACS Style

Zhao, X.; Zhao, J.; Zhang, H.; Zhou, F. Remote Sensing of Suspended Sediment Concentrations Based on the Waveform Decomposition of Airborne LiDAR Bathymetry. Remote Sens. 2018, 10, 247.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop