Optimal Estimation-Based Algorithm to Retrieve Aerosol Optical Properties for GEMS Measurements over Asia
Abstract
:1. Introduction
2. Validation and Ancillary Dataset
2.1. OMI L1B and OMI Surface LER Product (OMLER)
2.2. AERONET Sun-Photometer
2.3. CALIOP
3. Algorithm Description
3.1. Aerosol Model Assumptions
3.2. LUT Calculation
3.3. Aerosol Type Selection
3.4. Estimation of a Priori Quantity
3.5. Optimal Estimation
4. Results and Validation
4.1. Comparison with OMI AOD and SSA
4.2. Comparison with CALIOP ALH
4.3. Comparison with AERONET AOD and SSA
5. Uncertainty Estimation
- -
- SZA: 0°–56° in 7° intervals,
- -
- AOD at 443 nm: 0.3, 0.8 and 1.5,
- -
- SSA at 443 nm: 0.89, 0.92 and 0.97,
- -
- ALH: 1.0, 2.5, 4.0 and 5.5 km, and
- -
- Surface elevation: 0 km.
5.1. Inversion Error
5.2. Estimation of Model Parameters
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yu, H.; Remer, L.A.; Chin, M.; Bian, H.; Tan, Q.; Yuan, T.; Zhang, Y. Aerosols from overseas rival domestic emissions over North America. Science 2012, 337, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T.F.; Lim, J.H.; Song, C.K.; Lee, S.; et al. Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS). Atmos. Chem. Phys. 2016, 16, 1789–1808. [Google Scholar] [CrossRef]
- Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y.J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T.F.; et al. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign. Atmos. Meas. Tech. 2016, 9, 1377–1398. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Song, C.H.; Ryu, J.H.; Ahn, Y.H.; Song, C.K. Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager. Remote Sens. Environ. 2010, 114, 1077–1088. [Google Scholar] [CrossRef]
- Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y.-J.; Holben, B.; Eck, T.F.; Li, Z.; Song, C.H. GOCI Yonsei aerosol retrieval version 2 aerosol products: Improved algorithm description and error analysis with uncertainty estimation from 5-year validation over East Asia. Atmos. Meas. Tech. 2017. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9-Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Ahmad, Z.; Gleason, J. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res. Atmos. 1998, 103, 17099–17110. [Google Scholar] [CrossRef]
- Kleipool, Q.L.; Dobber, M.R.; de Haan, J.F.; Levelt, P.F. Earth surface reflectance climatology from 3 years of OMI data. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Spurr, R.J.D.; Drury, E.; Remer, L.A.; Levy, R.C.; Wang, J. Optimal estimation for global ground-level fine particulate matter concentrations. J. Geophys. Res. Atmos. 2013, 118, 5621–5636. [Google Scholar] [CrossRef]
- Kwon, H.A.; Park, R.J.; Jeong, J.I.; Lee, S.; González Abad, G.; Kurosu, T.P.; Palmer, P.I.; Chance, K. Sensitivity of formaldehyde (HCHO) column measurements from a geostationary satellite to temporal variation of the air mass factor in East Asia. Atmos. Chem. Phys. 2017, 17, 4673–4686. [Google Scholar] [CrossRef]
- Hong, H.; Lee, H.; Kim, J.; Jeong, U.; Ryu, J.; Lee, D. Investigation of Simultaneous Effects of Aerosol Properties and Aerosol Peak Height on the Air Mass Factors for Space-Borne NO2 Retrievals. Remote Sens. 2017, 9, 208. [Google Scholar] [CrossRef]
- Ahn, C.; Torres, O.; Jethva, H. Assessment of OMI near-UV aerosol optical depth over land. J. Geophys. Res. Atmos. 2014, 119, 2457–2473. [Google Scholar] [CrossRef]
- Jethva, H.; Torres, O.; Ahn, C. Global assessment of OMI aerosol single-scattering albedo using ground-based AERONET inversion. J. Geophys. Res. Atmos. 2014, 119, 9020–9040. [Google Scholar] [CrossRef]
- Torres, O.; Ahn, C.; Chen, Z. Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations. Atmos. Meas. Tech. 2013, 6, 3257–3270. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.X.; Powell, K.A.; Liu, Z.Y.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA). Formation Flying: The Afternoon “A-Train” Satellite Constellation; NASA Fact Sheet 2003, FS-2003-1-053-GSFC; Goddard Space Flight Center: Greenbelt, MD, USA, 2003.
- Jeong, M.J.; Hsu, N.C. Retrievals of aerosol single-scattering albedo and effective aerosol layer height for biomass-burning smoke: Synergy derived from “A-Train” sensors. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Lee, J.; Hsu, N.C.; Bettenhausen, C.; Sayer, A.M.; Seftor, C.J.; Jeong, M.J. Retrieving the height of smoke and dust aerosols by synergistic use of VIIRS, OMPS, and CALIOP observations. J. Geophys. Res. Atmos. 2015, 120, 8372–8388. [Google Scholar] [CrossRef]
- Park, S.S.; Kim, J.; Lee, H.; Torres, O.; Lee, K.M.; Lee, S.D. Utilization of O-4 slant column density to derive aerosol layer height from a space-borne UV-visible hyperspectral sensor: Sensitivity and case study. Atmos. Chem. Phys. 2016, 16, 1987–2006. [Google Scholar] [CrossRef]
- Chimot, J.; Veefkind, J.P.; Vlemmix, T.; de Haan, J.F.; Amiridis, V.; Proestakis, E.; Marinou, E.; Levelt, P.F. An exploratory study on the aerosol height retrieval from OMI measurements of the 477 nm O-2-O-2 spectral band using a neural network approach. Atmos. Meas. Tech. 2017, 10, 783–809. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000; Volume 2. [Google Scholar]
- Rodgers, C.D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. 1976, 14, 609–624. [Google Scholar] [CrossRef]
- Huneeus, N.; Boucher, O. One-dimensional variational retrieval of aerosol extinction coefficient from synthetic LIDAR and radiometric measurements. J. Geophys. Res. Atmos. 2007, 112, 112. [Google Scholar] [CrossRef]
- Govaerts, Y.M.; Wagner, S.; Lattanzio, A.; Watts, P. Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 1. Theory. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Wagner, S.C.; Govaerts, Y.M.; Lattanzio, A. Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 2. Implementation and evaluation. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.K.; Sinyuk, A.; Welton, E.J.; Holben, B. Total Ozone Mapping Spectrometer measurements of aerosol absorption from space: Comparison to SAFARI 2000 ground-based observations. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Sinyuk, A.; Ginoux, P.; Holben, B. A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci. 2002, 59, 398–413. [Google Scholar] [CrossRef]
- Spurr, R.J. VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. J. Quant. Spectrosc. Radiat. Transf. 2006, 102, 316–342. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Song, C.H.; Kim, S.B.; Chun, Y.; Sohn, B.J.; Holben, B.N. Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos. Environ. 2010, 44, 3110–3117. [Google Scholar] [CrossRef]
- Levelt, P.F.; Van den Oord, G.H.J.; Dobber, M.R.; Malkki, A.; Visser, H.; de Vries, J.; Stammes, P.; Lundell, J.O.V.; Saari, H. The Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Holben, B.N.; Tanre, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F.; et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. Atmos. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanre, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef]
- Higurashi, A.; Nakajima, T. Detection of aerosol types over the East China Sea near Japan from four-channel satellite data. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Lee, H.C.; Higurashi, A.; Takemura, T.; Song, C.H. Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud-East Asia Regional Experiment campaign. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Kirchstetter, T.W.; Novakov, T.; Hobbs, P.V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Lee, K.; Choi, H.; Kim, J. Optical Constants for Asian Dust in UV-VIS Region and OMI Observations. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 12–16 December 2016. [Google Scholar]
- Hess, M.; Koepke, P.; Schult, I. Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Wagner, R.; Ajtai, T.; Kandler, K.; Lieke, K.; Linke, C.; Muller, T.; Schnaiter, M.; Vragel, M. Complex refractive indices of Saharan dust samples at visible and near UV wavelengths: A laboratory study. Atmos. Chem. Phys. 2012, 12, 2491–2512. [Google Scholar] [CrossRef]
- Grainger, R.G.; Lucas, J.; Thomas, G.E.; Ewen, G.B. Calculation of Mie derivatives. Appl. Opt. 2004, 43, 5386–5393. [Google Scholar] [CrossRef] [PubMed]
- De Vries, M.J.M.P.; Beirle, S.; Wagner, T. UV Aerosol Indices from SCIAMACHY: Introducing the SCattering Index (SCI). Atmos. Chem. Phys. 2009, 9, 9555–9567. [Google Scholar] [CrossRef]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Boesch, H.; Brown, L.; Castano, R.; Christi, M.; Crisp, D.; Eldering, A.; Fisher, B.; Frankenberg, C.; Gunson, M.; Granat, R. Orbiting Carbon Observatory (OCO)-2. Available online: https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_L2_ATBD.V6.pdf (accessed on 21 January 2018).
- Dobber, M.R.; Dirksen, R.J.; Levelt, P.F.; Van den Oord, G.H.J.; Voors, R.H.M.; Kleipool, Q.; Jaross, G.; Kowalewski, M.; Hilsenrath, E.; Leppelmeier, G.W.; et al. Ozone-Monitoring Instrument calibration. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1209–1238. [Google Scholar] [CrossRef]
- Levelt, P.; Noordhoek, R. OMI Algorithm Theoretical Basis Document Volume I: OMI Instrument, Level 0-1b Processor, Calibration & Operations, Technology Report ATBD-OMI-01, Version 1.1; 2002. Available online: https://projects.knmi.nl/omi/documents/data/OMI_ATBD_Volume_1_V1d1.pdf (accessed on 21 January. 2018).
- Stammes, P.; Noordhoek, R. OMI Algorithm Theoretical Basis Document Volume III: Clouds, Aerosols, and Surface UV Irradiance, Technology Report ATBD-OMI-03, Version 2; 2002. Available online: https://projects.knmi.nl/omi/documents/data/OMI_ATBD_Volume_3_V2.pdf (accessed on 21 January 2018).
- Mok, J.; Krotkov, N.A.; Arola, A.; Torres, O.; Jethva, H.; Andrade, M.; Labow, G.; Eck, T.F.; Li, Z.; Dickerson, R.R.; et al. Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin. Sci. Rep. 2016, 6, 36940. [Google Scholar] [CrossRef] [PubMed]
- Fraser, R.S.; Kaufman, Y.J. The Relative Importance of Aerosol Scattering and Absorption in Remote-Sensing. IEEE Trans. Geosci. Remote Sens. 1985, 23, 625–633. [Google Scholar] [CrossRef]
- Jethva, H.; Torres, O. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument. Atmos. Chem. Phys. 2011, 11, 10541–10551. [Google Scholar] [CrossRef]
- Mok, J.; Krotkov, N.A.; Torres, O.; Jethva, H.; Li, Z.; Kim, J.; Koo, J.H.; Go, S.; Irie, H.; Labow, G.; et al. Comparisons of spectral aerosol absorption in Seoul, South Korea. Atmos. Meas. Tech. Discuss. 2017. [Google Scholar] [CrossRef]
Spectral Range (nm) | 300–500 nm |
---|---|
Spectral resolution (nm) | 0.6 (0.2 nm × 3 samples) |
Spatial resolution | 7 km NS × 8 km EW @ Seoul 3.5 km NS × 8 km EW for aerosol |
Spatial coverage | 5°S–45°N 75°E–145°E |
Observation time | 30 min |
Onboard calibration | Solar, cal light source |
Site | Lon. (°E) | Lat. (°N) | Number of Data Points | Initial Day | Final Day |
---|---|---|---|---|---|
Anmyon | 126.33 | 36.54 | 4736 | 4 Jan. 2005 | 25 Nov. 2007 |
Bac_Giang | 106.23 | 21.29 | 4332 | 8 Jan. 2005 | 17 Sep. 2007 |
BackGarden_GZ | 113.02 | 23.30 | 316 | 22 June 2006 | 27 July 2006 |
Beijing | 116.38 | 39.98 | 20,828 | 2 Jan. 2005 | 30 Nov. 2007 |
Chen-Kung_Univ | 120.22 | 23.00 | 5964 | 2 Jan. 2005 | 10 July 2007 |
Dalanzadgad | 104.42 | 43.58 | 11,891 | 2 Jan. 2005 | 10 Mar. 2007 |
EPA-NCU | 121.19 | 24.97 | 2795 | 18 July 2006 | 27 Dec. 2007 |
Gosan_SNU | 126.16 | 33.29 | 3655 | 6 Jan. 2005 | 16 Dec. 2007 |
Gwangju_GIST | 126.84 | 35.23 | 6099 | 3 Jan. 2005 | 13 Dec. 2007 |
Hangzhou-ZFU | 119.73 | 30.26 | 888 | 8 Aug. 2007 | 14 Dec. 2007 |
Hefei | 117.16 | 31.91 | 1241 | 17 Nov. 2005 | 20 Dec. 2007 |
Hong_Kong_Hok_Tsui | 114.26 | 22.21 | 888 | 17 Oct. 2007 | 31 Dec. 2007 |
Hong_Kong_PolyU | 114.18 | 22.30 | 4873 | 4 Nov. 2005 | 31 Dec. 2007 |
Liangning | 122.70 | 41.51 | 1250 | 6 Apr. 2005 | 7 May 2005 |
Lulin | 120.87 | 23.47 | 1869 | 5 Aug. 2006 | 31 Mar 2007 |
NCU_Taiwan | 121.19 | 24.97 | 1262 | 17 Jan. 2005 | 25 Oct. 2006 |
Noto | 137.14 | 37.33 | 1717 | 11 June 2007 | 30 Nov. 2007 |
Osaka | 135.59 | 34.65 | 7177 | 25 Mar. 2005 | 30 Dec. 2007 |
PKU_PEK | 116.18 | 39.59 | 420 | 14 Aug. 2006 | 10 Sep. 2006 |
SACOL | 104.14 | 35.95 | 12,778 | 28 July 2006 | 31 Dec. 2007 |
Shirahama | 135.36 | 33.69 | 15,567 | 1 Jan 2005 | 31 Dec. 2007 |
Taihu | 120.22 | 31.42 | 8876 | 1 Sep. 2005 | 31 Dec. 2007 |
Taipei_CWB | 121.50 | 25.03 | 3955 | 3 Jan. 2005 | 27 Dec. 2007 |
Ussuriysk | 132.16 | 43.70 | 4793 | 2 Jan. 2005 | 29 Sep. 2007 |
XiangHe | 116.96 | 39.75 | 19,407 | 2 Jan. 2005 | 31 Dec. 2007 |
Xinglong | 117.58 | 40.40 | 4774 | 19 Feb. 2006 | 31 Dec. 2007 |
Type | rm1 | rm2 | σm1 | σm2 | M1 Fraction | Re(RI) (440 nm) | SSA (440 nm) | AAE 440–675 nm | AE 440–675 nm |
---|---|---|---|---|---|---|---|---|---|
HAF | 0.0854 | 1.4115 | 1.5421 | 1.7630 | 0.99994 | 1.46 | 0.88 | 1.34 | 1.49 |
Dust | 0.0644 | 1.0392 | 1.4420 | 1.6436 | 0.99823 | 1.48 | 0.91 | 2.11 | 0.25 |
NA | 0.1013 | 0.8176 | 1.5870 | 1.9371 | 0.99980 | 1.41 | 0.97 | 1.17 | 1.53 |
Variable Name | No. of Entries | Entries |
---|---|---|
Wavelength (nm) | 5 | 354, 388, 443, 477, 490 |
SZA (°) | 12 | 0.01, 5, 10, 15, 20, 27, 34, 41, 48, 55, 62, 69 |
VZA (°) | 12 | 0.01, 5, 10, 15, 20, 27, 34, 41, 48, 55, 62, 69 |
RAA (°) | 11 | 0.01, 15, 30, 45, 60, 80, 100, 120, 140, 160, 180 |
SUR | 4 | 0.0, 0.05, 0.1, 0.2 |
AOD (443 nm) | 8 | 0.0, 0.1, 0.4, 0.8, 1.2, 2.0, 2.8, 3.6 |
SSA (443 nm) | 7 | 0.82, 0.85, 0.88, 0.91, 0.94, 0.97, 1.0 |
Aerosol height (km) | 5 | 0.5, 1.5, 3, 4.5, 6 |
Surface elevation (km) | 3 | 0, 3, 6 |
State | Ref. Condition | Sur. Ref. Error (%) | HAF | Dust | NA | |||
---|---|---|---|---|---|---|---|---|
Error (Median) | Error (Median) | Error (Median) | Error (Median) | Error (Median) | Error (Median) | |||
AOD | 0.30 | −40.00 | 0.34 | 0.25 | 0.33 | 0.25 | 0.70 | 0.52 |
0.80 | 0.27 | 0.26 | 0.56 | |||||
1.50 | 0.21 | 0.22 | 0.42 | |||||
0.30 | −20.00 | 0.19 | 0.13 | 0.17 | 0.13 | 0.35 | 0.28 | |
0.80 | 0.14 | 0.14 | 0.29 | |||||
1.50 | 0.11 | 0.12 | 0.22 | |||||
0.30 | 20.00 | −0.20 | −0.15 | −0.14 | −0.15 | −0.31 | −0.25 | |
0.80 | −0.16 | −0.17 | −0.27 | |||||
1.50 | −0.12 | −0.14 | −0.21 | |||||
0.30 | 40.00 | −0.27 | −0.27 | −0.19 | −0.28 | NaN | −0.48 | |
0.80 | −0.32 | −0.32 | −0.62 | |||||
1.50 | −0.24 | −0.26 | −0.39 | |||||
SSA | 0.89 | −40.00 | 0.003 | −0.001 | 0.007 | 0.001 | −0.005 | −0.012 |
0.93 | −0.002 | 0.000 | −0.015 | |||||
0.97 | −0.006 | −0.003 | −0.023 | |||||
0.89 | −20.00 | 0.002 | −0.001 | 0.004 | 0.001 | 0.000 | −0.005 | |
0.93 | −0.001 | 0.000 | −0.006 | |||||
0.97 | −0.002 | −0.002 | −0.012 | |||||
0.89 | 20.00 | −0.001 | 0.000 | −0.006 | −0.001 | −0.008 | 0.001 | |
0.93 | −0.001 | −0.002 | 0.002 | |||||
0.97 | 0.002 | 0.002 | 0.008 | |||||
0.89 | 40.00 | −0.005 | 0.000 | −0.012 | −0.004 | −0.033 | −0.001 | |
0.93 | −0.001 | −0.003 | −0.001 | |||||
0.97 | 0.004 | 0.003 | 0.022 | |||||
ALH (km) | 1.00 | −40.00 | −0.23 | −1.17 | −0.04 | −0.27 | −0.08 | −1.18 |
2.50 | −1.35 | −0.47 | −1.17 | |||||
4.00 | −1.89 | −0.47 | −1.53 | |||||
5.50 | −1.92 | −0.56 | −1.79 | |||||
1.00 | −20.00 | −0.10 | −0.55 | −0.02 | −0.12 | −0.01 | −0.33 | |
2.50 | −0.95 | −0.24 | −0.32 | |||||
4.00 | −0.89 | −0.27 | −0.49 | |||||
5.50 | −0.99 | −0.29 | −0.73 | |||||
1.00 | 20.00 | 0.80 | 0.62 | 0.15 | 0.27 | −0.20 | −0.06 | |
2.50 | 0.82 | 0.24 | −0.15 | |||||
4.00 | 0.89 | 0.32 | −0.04 | |||||
5.50 | 0.51 | 0.38 | 0.28 | |||||
1.00 | 40.00 | 1.52 | 1.40 | 0.23 | 0.43 | −0.71 | −0.36 | |
2.50 | 1.65 | 0.27 | −0.70 | |||||
4.00 | 1.70 | 0.54 | −0.29 | |||||
5.50 | 0.53 | 0.44 | −0.07 |
State | Ref. Value | HAF | Dust | NA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Type Error | Error (Med.) | Error (Med.) | Type Error | Error (Med.) | Error (Med.) | Type Error | Error (Med.) | Error (Med.) | ||
AOD | 0.3 | Dust | 0.08 | 0.13 | HAF | −0.07 | −0.10 | HAF | −0.16 | −0.40 |
0.8 | 0.20 | −0.17 | −0.40 | |||||||
1.5 | 0.49 | −0.31 | −0.73 | |||||||
0.3 | NA | 0.51 | 1.38 | NA | 0.20 | 0.76 | Dust | −0.15 | −0.28 | |
0.8 | 1.53 | 0.65 | −0.35 | |||||||
1.5 | 5.51 | 1.75 | −0.63 | |||||||
SSA | 0.89 | Dust | −0.010 | −0.007 | HAF | 0.016 | 0.008 | HAF | 0.048 | 0.035 |
0.93 | −0.011 | 0.011 | 0.041 | |||||||
0.97 | −0.004 | 0.002 | 0.019 | |||||||
0.89 | NA | −0.027 | −0.036 | NA | −0.015 | −0.024 | Dust | 0.028 | 0.031 | |
0.93 | −0.040 | −0.027 | 0.034 | |||||||
0.97 | −0.039 | −0.026 | 0.023 | |||||||
ALH (km) | 1 | Dust | 3.90 | 2.60 | HAF | −0.69 | −1.92 | HAF | 0.74 | 0.52 |
2.5 | 3.34 | −1.59 | 0.62 | |||||||
4 | 2.17 | −2.95 | 0.56 | |||||||
5.5 | 1.61 | −4.31 | 0.40 | |||||||
1 | NA | 0.07 | 0.00 | NA | 0.27 | −0.29 | Dust | 0.48 | 0.67 | |
2.5 | −0.02 | −0.48 | 0.90 | |||||||
4 | −0.06 | −0.90 | 1.41 | |||||||
5.5 | −0.07 | −1.24 | 0.60 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kim, J.; Torres, O.; Ahn, C.; Kim, W.; Jeong, U.; Go, S.; Liu, X.; Moon, K.J.; Kim, D.-R. Optimal Estimation-Based Algorithm to Retrieve Aerosol Optical Properties for GEMS Measurements over Asia. Remote Sens. 2018, 10, 162. https://doi.org/10.3390/rs10020162
Kim M, Kim J, Torres O, Ahn C, Kim W, Jeong U, Go S, Liu X, Moon KJ, Kim D-R. Optimal Estimation-Based Algorithm to Retrieve Aerosol Optical Properties for GEMS Measurements over Asia. Remote Sensing. 2018; 10(2):162. https://doi.org/10.3390/rs10020162
Chicago/Turabian StyleKim, Mijin, Jhoon Kim, Omar Torres, Changwoo Ahn, Woogyung Kim, Ukkyo Jeong, Sujung Go, Xiong Liu, Kyung Jung Moon, and Deok-Rae Kim. 2018. "Optimal Estimation-Based Algorithm to Retrieve Aerosol Optical Properties for GEMS Measurements over Asia" Remote Sensing 10, no. 2: 162. https://doi.org/10.3390/rs10020162
APA StyleKim, M., Kim, J., Torres, O., Ahn, C., Kim, W., Jeong, U., Go, S., Liu, X., Moon, K. J., & Kim, D. -R. (2018). Optimal Estimation-Based Algorithm to Retrieve Aerosol Optical Properties for GEMS Measurements over Asia. Remote Sensing, 10(2), 162. https://doi.org/10.3390/rs10020162