Instantaneous Top-of-Atmosphere Albedo Comparison between CERES and MISR over the Arctic
Abstract
1. Introduction
2. Datasets
2.1. CERES
2.2. MISR
3. Instantaneous Albedo Collocation and Calculation
4. Results
4.1. Instantaneous SW Albedo Comparison
4.1.1. Overcast Ocean
4.1.2. Overcast Snow/Ice
4.2. Scene Classification Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stephens, G.L.; O’Brien, D.; Webster, P.J.; Pilewski, P.; Kato, S.; Li, J. The albedo of Earth: The Albedo of Earth. Rev. Geophys. 2015, 53, 141–163. [Google Scholar] [CrossRef]
- Wielicki, B.A.; Harrison, E.F.; Cess, R.D.; King, M.D.; Randall, D.A. Mission to Planet Earth: Role of Clouds and Radiation in Climate. Bull. Am. Meteorol. Soc. 1995, 76, 2125–2153. [Google Scholar] [CrossRef]
- Wielicki, B.A. Changes in Earth’s Albedo Measured by Satellite. Science 2005, 308, 825. [Google Scholar] [CrossRef] [PubMed]
- Hassol, S.J. Impacts of a Warming Arctic: Arctic Climate Impact Assessment; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2004; ISBN 978-0-521-61778-9. [Google Scholar]
- Pistone, K.; Eisenman, I.; Ramanathan, V. Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl. Acad. Sci. USA 2014, 111, 3322–3326. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Liang, S.; Wang, D.; Zhou, Y.; Jia, A. Long-term record of top-of-atmosphere albedo over land generated from AVHRR data. Remote Sens. Environ. 2018, 211, 71–88. [Google Scholar] [CrossRef]
- Porter, D.F.; Cassano, J.J.; Serreze, M.C.; Kindig, D.N. New estimates of the large-scale Arctic atmospheric energy budget. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Kim, B.-M.; Hur, S.-K.; Kim, S.-J.; Kim, J.-H.; Ho, C.-H. Connecting early summer cloud-controlled sunlight and late summer sea ice in the Arctic: Arctic cloud, sunlight, and sea ice. J. Geophys. Res. Atmos. 2014, 119, 11087–11099. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.-R.; Choi, Y.-S.; Kim, W.; Kim, H.-S. Development of statistical seasonal prediction models of Arctic Sea Ice concentration using CERES absorbed solar radiation. Asia-Pac. J. Atmos. Sci. 2016, 52, 467–477. [Google Scholar] [CrossRef]
- Zhan, Y.; Davies, R. September Arctic sea ice extent indicated by June reflected solar radiation. J. Geophys. Res. Atmos. 2017, 122, 2194–2202. [Google Scholar] [CrossRef]
- Loeb, N.G.; Kato, S.; Loukachine, K.; Manalo-Smith, N.; Doelling, D.R. Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part II: Validation. J. Atmos. Ocean. Technol. 2007, 24, 564–584. [Google Scholar] [CrossRef]
- Loeb, N.G.; Loukachine, K.; Manalo-Smith, N.; Wielicki, B.A.; Young, D.F. Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part II: Validation. J. Appl. Meteorol. 2003, 42, 1748–1769. [Google Scholar] [CrossRef]
- Su, W.; Corbett, J.; Eitzen, Z.; Liang, L. Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Validation. Atmos. Meas. Tech. 2015, 8, 3297–3313. [Google Scholar] [CrossRef]
- Loeb, N.G.; Sun, W.; Miller, W.F.; Loukachine, K.; Davies, R. Fusion of CERES, MISR, and MODIS measurements for top-of-atmosphere radiative flux validation. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Kandel, R.; Viollier, M.; Raberanto, P.; Duvel, J.P.; Pakhomov, L.A.; Golovko, V.A.; Trishchenko, A.P.; Mueller, J.; Raschke, E.; Stuhlmann, R.; International ScaRaB Scientific Working Group (ISSWG). The ScaRaB Earth Radiation Budget Dataset. Bull. Am. Meteorol. Soc. 1998, 79, 765–783. [Google Scholar] [CrossRef]
- Harries, J.E.; Russell, J.E.; Hanafin, J.A.; Brindley, H.; Futyan, J.; Rufus, J.; Kellock, S.; Matthews, G.; Wrigley, R.; Last, A.; et al. The Geostationary Earth Radiation Budget Project. Bull. Am. Meteorol. Soc. 2005, 86, 945–960. [Google Scholar] [CrossRef]
- Diner, D.J.; Davies, R.; Várnai, T.; Moroney, C.; Borel, C.; Gerstl, S.A.W.; Nelson, D.L. MISR Level 2 Top-of-Atmosphere Albedo Algorithm Theoretical Basis. Available online: https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd-misr-08.pdf (accessed on 23 November 2018).
- Sun, W.; Loeb, N.G.; Davies, R.; Loukachine, K.; Miller, W.F. Comparison of MISR and CERES top-of-atmosphere albedo. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Zhan, Y.; Davies, R. Intercalibration of CERES, MODIS, and MISR reflected solar radiation and its application to albedo trends: Intercalibration: CERES, MODIS, and MISR. J. Geophys. Res. Atmos. 2016, 121, 6273–6283. [Google Scholar] [CrossRef]
- Kato, S. Top-of-atmosphere shortwave broadband observed radiance and estimated irradiance over polar regions from Clouds and the Earth’s Radiant Energy System (CERES) instruments on Terra. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Loeb, N.G.; Kato, S.; Loukachine, K.; Manalo-Smith, N. Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part I: Methodology. J. Atmos. Ocean. Technol. 2005, 22, 338–351. [Google Scholar] [CrossRef]
- Suttles, J.T.; Green, R.N.; Minnis, P.; Smith, G.L.; Staylor, W.F.; Wielicki, B.A.; Walker, I.J.; Young, D.F.; Taylor, V.R.; Stowe, L.L. Angular Radiation Models for Earth-Atmosphere System (Volume I—Shortwave Radiation); NASA Langley Research Center: Hampton, VA, USA, 1988.
- Di Girolamo, L.; Várnai, T.; Davies, R. Apparent breakdown of reciprocity in reflected solar radiances. J. Geophys. Res. Atmos. 1998, 103, 8795–8803. [Google Scholar] [CrossRef]
- Su, W.; Corbett, J.; Eitzen, Z.; Liang, L. Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Methodology. Atmos. Meas. Tech. 2015, 8, 611–632. [Google Scholar] [CrossRef]
- Corbett, J.; Su, W. Accounting for the effects of sastrugi in the CERES clear-sky Antarctic shortwave angular distribution models. Atmos. Meas. Tech. 2015, 8, 3163–3175. [Google Scholar] [CrossRef]
- Diner, D.J.; Beckert, J.C.; Reilly, T.H.; Bruegge, C.J.; Conel, J.E.; Kahn, R.A.; Martonchik, J.V.; Ackerman, T.P.; Davies, R.; Gerstl, S.A.W.; et al. Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1072–1087. [Google Scholar] [CrossRef]
- Wu, D.L.; Lee, J.N. Arctic low cloud changes as observed by MISR and CALIOP: Implication for the enhanced autumnal warming and sea ice loss: ARCTIC LOW CLOUD CHANGES. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Genkova, I.; Wilson, M.; Yang, Y.; Zhao, G.; Chapman, B.; Snodgrass, E.; Mazzoni, D.; Di Girolamo, L. The synergy of the MISR cloud masks for global cloud climatology. In Proceedings of the Remote Sensing of Clouds and the Atmosphere X, Bruges, Belgium, 19–22 September 2005. [Google Scholar]
- Diner, D.J.; Davies, R.; Di Girolamo, L.; Horvath, A.; Moroney, C.; Muller, J.-P.; Paradise, S.R.; Wenkert, D.; Zong, J. MISR Level 2 Cloud Detection and Classification Algorithm Theoretical Basis. Available online: https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd-misr-07.pdf (accessed on 23 November 2018).
- Diner, D.J.; Di Girolamo, L.; Clothiaux, E.E. MISR Level 1 Cloud Detection Algorithm Theoretical Basis. Available online: https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd-misr-06.pdf (accessed on 23 November 2018).
- Zhao, G.; Di Girolamo, L. A Cloud Fraction versus View Angle Technique for Automatic In-Scene Evaluation of the MISR Cloud Mask. J. Appl. Meteorol. 2004, 43, 860–869. [Google Scholar] [CrossRef]
- Yang, Y.; Di Girolamo, L.; Mazzoni, D. Selection of the automated thresholding algorithm for the Multi-angle Imaging SpectroRadiometer Radiometric Camera-by-Camera Cloud Mask over land. Remote Sens. Environ. 2007, 107, 159–171. [Google Scholar] [CrossRef]
- Di Girolamo, L.; Wilson, M.J. A first look at band-differenced angular signatures for cloud detection from MISR. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1730–1734. [Google Scholar] [CrossRef]
- Di Girolamo, L.; Moroney, C.; Davies, R.; Mazzoni, D.; Di Girolamo, L.; Moroney, C.; Davies, R.; Di Girolamo, L.; Mazzoni, D.; Moroney, C.; et al. MISR Level 2 Top-of- Atmosphere/Cloud Products Quality Statement. 2007. Available online: https://eosweb.larc.nasa.gov/PRODOCS/misr/Quality_Summaries/L2_Cloud_Products.html (accessed on 23 November 2018).
- Di Girolamo, L.; Davies, R. A Band-Differenced Angular Signature Technique for Cirms Cloud Detection. IEEE Trans. Geosci. Remote Sens. 1994, 32, 7. [Google Scholar] [CrossRef]
- Di Girolamo, L.; Menzies, A.; Zhao, G.; Mueller, K.; Moroney, C.; Diner, D.J. MISR Level 3 Cloud Fraction by Altitude Algorithm Theoretical Basis. Available online: https://eospso.gsfc.nasa.gov/sites/default/files/atbd/MISR_CFBA_ATBD.pdf (accessed on 23 November 2018).
- Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Di Girolamo, L.; Getzewich, B.; Guignard, A.; Heidinger, A.; et al. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel. Bull. Am. Meteorol. Soc. 2013, 94, 1031–1049. [Google Scholar] [CrossRef]
- Moroney, C. (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA). Personal communication, 2018.
- Stephens, G.L. Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes. J. Atmos. Sci. 1978, 35, 2123–2132. [Google Scholar] [CrossRef]
- Liu, S.; Heygster, G.; Zhang, S. Comparison of CloudSat cloud liquid water paths in arctic summer using ground-based microwave radiometer. J. Ocean Univ. China 2010, 9, 333–342. [Google Scholar] [CrossRef]
- Brodzik, M.J.; Stewart, J.S. Near-Real-Time SSM/I-SSMIS EASE-Grid Daily Global Ice Concentration and Snow Extent, Version 5. 2016. Available online: https://nsidc.org/data/NISE/versions/5 (accessed on 23 November 2018).
- Loeb, N.G.; Wielicki, B.A.; Doelling, D.R.; Smith, G.L.; Keyes, D.F.; Kato, S.; Manalo-Smith, N.; Wong, T. Toward Optimal Closure of the Earth’s Top-of-Atmosphere Radiation Budget. J. Clim. 2009, 22, 748–766. [Google Scholar] [CrossRef]
- Cox, S.J.; Stackhouse, P.W.; Gupta, S.K.; Mikovitz, J.C.; Zhang, T.; Hinkelman, L.M.; Wild, M.; Ohmura, A. The Nasa/Gewex Surface Radiation Budget Project: Overview and Analysis. Available online: http://ams.confex.com/ams/pdfpapers/112990.pdf (accessed on 23 November 2018).
- Zhang, Y. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Loeb, N.G.; Manalo-Smith, N.; Kato, S.; Miller, W.F.; Gupta, S.K.; Minnis, P.; Wielicki, B.A. Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part I: Methodology. J. Appl. Meteorol. 2003, 42, 240–265. [Google Scholar] [CrossRef]
Instrument | Dataset | Purpose |
---|---|---|
CERES | CER_SSF_Terra-FM1-MODIS_Edition4A | albedo comparison |
CER_SSF_Terra-FM1-MODIS_Edition3A | ||
MISR | MISR_AM1_TC_ALBEDO_F05_0011 | |
MISR_AM1_TC_STEREO_F08_0017 | cloud mask consistency check | |
MISR_AM1_TC_CLOUD_F01_0001 | ||
MISR_AM1_GRP_RCCM_GM_F04_0025 | ||
MISR_AM1_TC_CLASSIFIERS_F07_0013 |
Parameter | CERES Value | MISR Value |
---|---|---|
Viewing zenith angle | ≤10° | ≤10° |
Cloud fraction | ≥99.9% | n/a |
Surface type | Open water, Permanent snow, Fresh snow, Sea ice | n/a |
Surface type percentage | 100% | n/a |
Unobscured percentage | n/a | ≥90% (An Camera) |
c0 | c1 | c2 | Number of Samples | R2 | ||
---|---|---|---|---|---|---|
[40°, 50°) | 0.0493 | 0.5782 | 0.1017 | 318240 | 5.2 | 0.98 |
[50°, 60°) | 0.0507 | 0.8565 | −0.1861 | 429684 | 5.2 | 0.98 |
[60°, 70°) | 0.0512 | 0.762 | −0.0884 | 238810 | 5.4 | 0.98 |
[70°, 80°) | 0.0471 | 0.2805 | 0.4128 | 325160 | 4.5 | 0.97 |
[80°, 90°) | 0.0505 | 0.1334 | 0.5518 | 185923 | 6.2 | 0.95 |
c0 | c1 | c2 | Number of Samples | R2 | ||
---|---|---|---|---|---|---|
[40°, 50°) | 0.036 | 0.5545 | 0.1681 | 9358 | 4.5 | 0.93 |
[50°, 60°) | 0.115 | 0.6389 | −0.0237 | 72292 | 4.6 | 0.82 |
[60°, 70°) | 0.1032 | 0.6383 | −0.015 | 166951 | 4.8 | 0.84 |
[70°, 80°) | 0.1014 | 0.5963 | 0.0157 | 68865 | 4.2 | 0.88 |
[80°, 90°) | 0.1253 | 0.5485 | −0.0076 | 3967 | 4.7 | 0.90 |
Consistent Scene Classification | |||||
Surface type | |||||
Ocean | 5.2 (1.7) | 4.9 (0.2) | 5.7 (1.0) | 7.4 (−0.5) | 14.7 (5.7) |
SI | 4.4 (−3.2) | 4.1 (1.9) | 4.9 (3.0) | 6.1 (3.2) | 16.6 (13.8) |
FS | 4.0 (0.5) | 4.9 (3.1) | 7.1 (4.5) | 8.7 (4.7) | 14.2 (10.9) |
PS | 6.6 (1.8) | 5.3 (4.2) | 7.1 (5.2) | 10.1 (8.0) | 20.4 (18.6) |
Inconsistent Scene Classification | |||||
Ocean | 11.9 (6.8) | 19.6 (13.2) | 16.5 (10.0) | 24.2 (12.6) | 31.7 (17.7) |
SI | 8.3 (−5.0) | 5.7 (1.6) | 6.4 (1.6) | 8.0 (2.1) | 18.0 (13.8) |
FS | 7.1 (-1.5) | 6.7 (1.8) | 9.5 (2.2) | 10.6 (3.6) | 17.2 (11.6) |
PS | 17.7 (−6.7) | 18.0 (−5.7) | 14.6 (−1.0) | 18.0 (−0.5) | 22.6 (9.2) |
CERES Surface Type | MISR Operational Snow/Ice Mask | MISR T6 | MISR T15 |
---|---|---|---|
Overcast ocean | 17.6 | 6.2 | 5.7 |
Overcast sea ice | 0.1 | 0.2 | 2.4 |
Overcast fresh snow | 10.8 | 13.1 | 24.9 |
Overcast permanent snow | 2.2 | 3.7 | 13.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, Y.; Di Girolamo, L.; Davies, R.; Moroney, C. Instantaneous Top-of-Atmosphere Albedo Comparison between CERES and MISR over the Arctic. Remote Sens. 2018, 10, 1882. https://doi.org/10.3390/rs10121882
Zhan Y, Di Girolamo L, Davies R, Moroney C. Instantaneous Top-of-Atmosphere Albedo Comparison between CERES and MISR over the Arctic. Remote Sensing. 2018; 10(12):1882. https://doi.org/10.3390/rs10121882
Chicago/Turabian StyleZhan, Yizhe, Larry Di Girolamo, Roger Davies, and Catherine Moroney. 2018. "Instantaneous Top-of-Atmosphere Albedo Comparison between CERES and MISR over the Arctic" Remote Sensing 10, no. 12: 1882. https://doi.org/10.3390/rs10121882
APA StyleZhan, Y., Di Girolamo, L., Davies, R., & Moroney, C. (2018). Instantaneous Top-of-Atmosphere Albedo Comparison between CERES and MISR over the Arctic. Remote Sensing, 10(12), 1882. https://doi.org/10.3390/rs10121882