Next Article in Journal
Snow Cover Monitoring with Chinese Gaofen-4 PMS Imagery and the Restored Snow Index (RSI) Method: Case Studies
Next Article in Special Issue
Characterizing Variability of Solar Irradiance in San Antonio, Texas Using Satellite Observations of Cloudiness
Previous Article in Journal
Quantification of Extent, Density, and Status of Aquatic Reed Beds Using Point Clouds Derived from UAV–RGB Imagery
Previous Article in Special Issue
Validation of Hourly Global Horizontal Irradiance for Two Satellite-Derived Datasets in Northeast Iraq

Earth-Observation-Based Estimation and Forecasting of Particulate Matter Impact on Solar Energy in Egypt

Institute for Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), 15236 Athens, Greece
Physicalisch-Meteorologisches Observatorium Davos, World Radiation Center (PMOD/WRC), CH-7260 Davos, Switzerland
Center of Excellence in Earth Systems Modeling & Observations, Chapman University, Orange, CA 92866, USA
Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
Department of Environmental Sciences, Faculty of Science, Alexandria University, Moharem Bek, Alexandria 21522, Egypt
Department of Meteorology, University of Reading, Reading RG6 6BB, UK
Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens (IAASARS/NOA), 15236 Athens, Greece
New and Renewable Energy Authority (NREA), Cairo 4544, Egypt
Author to whom correspondence should be addressed.
Remote Sens. 2018, 10(12), 1870;
Received: 24 October 2018 / Revised: 16 November 2018 / Accepted: 21 November 2018 / Published: 23 November 2018
(This article belongs to the Special Issue Solar Radiation, Modelling and Remote Sensing)
This study estimates the impact of dust aerosols on surface solar radiation and solar energy in Egypt based on Earth Observation (EO) related techniques. For this purpose, we exploited the synergy of monthly mean and daily post processed satellite remote sensing observations from the MODerate resolution Imaging Spectroradiometer (MODIS), radiative transfer model (RTM) simulations utilizing machine learning, in conjunction with 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). As cloudy conditions in this region are rare, aerosols in particular dust, are the most common sources of solar irradiance attenuation, causing performance issues in the photovoltaic (PV) and concentrated solar power (CSP) plant installations. The proposed EO-based methodology is based on the solar energy nowcasting system (SENSE) that quantifies the impact of aerosol and dust on solar energy potential by using the aerosol optical depth (AOD) in terms of climatological values and day-to-day monitoring and forecasting variability from MODIS and CAMS, respectively. The forecast accuracy was evaluated at various locations in Egypt with substantial PV and CSP capacity installed and found to be within 5–12% of that obtained from the satellite observations, highlighting the ability to use such modelling approaches for solar energy management and planning (M&P). Particulate matter resulted in attenuation by up to 64–107 kWh/m2 for global horizontal irradiance (GHI) and 192–329 kWh/m2 for direct normal irradiance (DNI) annually. This energy reduction is climatologically distributed between 0.7% and 12.9% in GHI and 2.9% to 41% in DNI with the maximum values observed in spring following the frequent dust activity of Khamaseen. Under extreme dust conditions the AOD is able to exceed 3.5 resulting in daily energy losses of more than 4 kWh/m2 for a 10 MW system. Such reductions are able to cause financial losses that exceed the daily revenue values. This work aims to show EO capabilities and techniques to be incorporated and utilized in solar energy studies and applications in sun-privileged locations with permanent aerosol sources such as Egypt. View Full-Text
Keywords: solar energy; aerosol impact; earth observation solar energy; aerosol impact; earth observation
Show Figures

Graphical abstract

MDPI and ACS Style

Kosmopoulos, P.G.; Kazadzis, S.; El-Askary, H.; Taylor, M.; Gkikas, A.; Proestakis, E.; Kontoes, C.; El-Khayat, M.M. Earth-Observation-Based Estimation and Forecasting of Particulate Matter Impact on Solar Energy in Egypt. Remote Sens. 2018, 10, 1870.

AMA Style

Kosmopoulos PG, Kazadzis S, El-Askary H, Taylor M, Gkikas A, Proestakis E, Kontoes C, El-Khayat MM. Earth-Observation-Based Estimation and Forecasting of Particulate Matter Impact on Solar Energy in Egypt. Remote Sensing. 2018; 10(12):1870.

Chicago/Turabian Style

Kosmopoulos, Panagiotis G., Stelios Kazadzis, Hesham El-Askary, Michael Taylor, Antonis Gkikas, Emmanouil Proestakis, Charalampos Kontoes, and Mohamed M. El-Khayat. 2018. "Earth-Observation-Based Estimation and Forecasting of Particulate Matter Impact on Solar Energy in Egypt" Remote Sensing 10, no. 12: 1870.

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop