The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent
Abstract
:1. Introduction
2. Methods
2.1. Datasets
2.1.1. ALOS PALSAR
2.1.2. Landsat Composites
- Identify 10 Landsat 5 scenes with less than 10% cloud cover from 2010.
- If less than 10 scenes available, then add Landsat 7 scenes with less than 10% cloud cover from 2010.
- If less than 5 scenes, then add Landsat 5 and 7 scenes from 2010 with less than 50% cloud up to a maximum of 15 scenes.
- If less than 5 scenes, then extend time range to 2009–2011 and repeat Steps 1–3.
2.2. Project Region Definition
2.3. Coastal Mask
2.4. Mangrove Habitat
2.5. Baseline Classification
2.5.1. Classification: ALOS PALSAR
2.5.2. Classification: Landsat
2.6. Merging into a Global Product
2.7. Quality Assurance
2.8. Accuracy Assessment
3. Results
3.1. Mangrove Baseline
3.2. Accuracy Assessment
3.3. Comparison to Existing Maps
4. Discussion
4.1. Methods of Mapping Mangroves
4.2. Forming a Monitoring System
4.3. Cautions and Caveats
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves (Version 3); Routledge: London, UK, 2010. [Google Scholar]
- Spalding, M.; Blasco, F.; Field, C. World Atlas of Mangroves; The International Society for Mangrove Ecosystems: Okinawa, Japan, 1997. [Google Scholar]
- FAO. Loss of Mangroves Alarming; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Romañach, S.S.; DeAngelis, D.L.; Koh, H.L.; Li, Y.; Teh, S.Y.; Raja Barizan, R.S.; Zhai, L. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manag. 2018, 154, 72–82. [Google Scholar] [CrossRef]
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Fensholt, R.; Mertz, O. Mangrove exploitation effects on biodiversity and ecosystem services. Biodivers. Conserv. 2015, 24, 3543–3557. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Swamy, L.; Drazen, E.; Johnson, W.R.; Bukoski, J.J. The future of tropical forests under the United Nations Sustainable Development Goals. J. Sustain. For. 2017, 37, 221–256. [Google Scholar] [CrossRef] [Green Version]
- FAO. Status and Trends in Mangrove Area Extent Worldwide, by M.L. Wilkie and S. Fortuna; FAO: Rome, Italy, 2003. [Google Scholar]
- FAO. The World’s Mangroves 1980–2005; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Lucas, R.M.; Rebelo, L.M.; Rosenqvist, A.; Itoh, T.; Shimada, M.; Simard, M.; Souza-Filho, P.W.; Thomas, N.; Trettin, C.; Accad, A.; et al. Contribution of L-band SAR to systematic global mangrove monitoring. Mar. Freshw. Res. 2014, 65, 589–603. [Google Scholar] [CrossRef]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Rakotomavo, A.; Fromard, F. Dynamics of mangrove forests in the Mangoky River delta, Madagascar, under the influence of natural and human factors. For. Ecol. Manag. 2010, 259, 1161–1169. [Google Scholar] [CrossRef] [Green Version]
- Tong, P.H.S.; Auda, Y.; Populus, J.; Aizpuru, M.; Habshi, A.A.; Blasco, F. Assessment from space of mangroves evolution in the Mekong Delta, in relation to extensive shrimp farming. Int. J. Remote Sens. 2004, 25, 4795–4812. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Andrade, F.; Bandeira, S.O.; Cardoso, P.; Mendes, R.N.; Paula, J. Analysis of cover change (1995–2005) of Tanzania/Mozambique trans-boundary mangroves using Landsat imagery. Aquat. Conserv. 2009, 19, S38–S45. [Google Scholar] [CrossRef]
- Long, J.B.; Giri, C. Mapping the Philippines’ Mangrove Forests Using Landsat Imagery. Sensors 2011, 11, 2972–2981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirui, K.B.; Kairo, J.G.; Bosire, J.; Viergever, K.M.; Rudra, S.; Huxham, M.; Briers, R.A. Mapping of mangrove forest land cover change along the Kenya coastline using Landsat imagery. Ocean Coast. Manag. 2013, 83, 19–24. [Google Scholar] [CrossRef] [Green Version]
- CONABIO. Distribución de los Manglares en México en 2015’, Escala: 1:50000. EdicióN: 1; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Sistema de Monitoreo de los Manglares de México (SMMM): Ciudad de México, Mexico, 2016.
- Nascimento, W.R., Jr.; Souza Filho, P.W.M.; Proisy, C.; Lucas, R.M.; Rosenqvist, A. Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery. Estuar. Coast. Shelf Sci. 2013, 117, 83–93. [Google Scholar] [CrossRef]
- Thomas, N.; Bunting, P.; Hardy, A.; Lucas, R.; Rosenqvist, A.; Fatoyinbo, T. Mapping mangrove baseline and time-series change extent: A global monitoring approach. Remote Sens. 2018, 10, 1466. [Google Scholar] [CrossRef]
- Heumann, B.W. An Object-Based Classification of Mangroves Using a Hybrid Decision Tree—Support Vector Machine Approach. Remote Sens. 2011, 3, 2440–2460. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, J.M.; de Santiago, F.F.; Bastien, J.; Lafrance, P. An Assessment of Mangroves in Guinea, West Africa, Using a Field and Remote Sensing Based Approach. Wetlands 2010, 30, 773–782. [Google Scholar] [CrossRef]
- Bunting, P.; Clewley, D.; Lucas, R.M.; Gillingham, S. The Remote Sensing and GIS Software Library (RSGISLib). Comput. Geosci. 2014, 62, 216–226. [Google Scholar] [CrossRef]
- Bunting, P.; Gillingham, S. The KEA image file format. Comput. Geosci. 2013, 57, 54–58. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Clewley, D.; Bunting, P.; Shepherd, J.; Gillingham, S.; Flood, N.; Dymond, J.; Lucas, R.; Armston, J.; Moghaddam, M. A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables. Remote Sens. 2014, 6, 6111–6135. [Google Scholar] [CrossRef] [Green Version]
- Cottam, A.; Gorelick, N.; Belward, A.S.; Pekel, J.F. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 1–19. [Google Scholar]
- Soluri, E.A.; Woodson, V.A. World Vector Shoreline. Int. Hydrogr. Rev. 1990, 1, 27–35. [Google Scholar]
- Wessel, P.; Smith, W.H.F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 1996, 101, 8741–8743. [Google Scholar] [CrossRef] [Green Version]
- Weatherall, P.; Marks, K.M.; Jakobsson, M.; Schmitt, T.; Tani, S.; Arndt, J.E.; Rovere, M.; Chayes, D.; Ferrini, V.; Wigley, R. A new digital bathymetric model of the world’s oceans. Earth Space Sci. 2015, 2, 331–345. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motohka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Bunting, P.; Clewley, D. Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI). 2018. Available online: https://arcsi.remotesensing.info (accessed on 21 October 2018).
- Chavez, P.S., Jr. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Vermote, E.; Tanre, D.; Deuze, J.; Herman, M.; Morcrette, J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Shepherd, J.D.; Dymond, J.R. Correcting satellite imagery for the variance of reflectance and illumination with topography. Int. J. Remote Sens. 2003, 24, 3503–3514. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef] [Green Version]
- Ramoino, F.; Tutunaru, F.; Pera, F.; Arino, O. Ten-Meter Sentinel-2A Cloud-Free Composite—Southern Africa 2016. Remote Sens. 2017, 9, 652. [Google Scholar] [CrossRef]
- Bunting, P.; Lucas, R.; Jones, K.; Bean, A. Characterisation and mapping of forest communities by clustering individual tree crowns. Remote Sens. Environ. 2010, 114, 2536–2547. [Google Scholar] [CrossRef]
- Wilson, E.B. Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 1927, 22, 209–212. [Google Scholar] [CrossRef]
Dataset | Period | Resolution | Source |
---|---|---|---|
ALOS PALSAR | 2010 | 25 m | JAXA |
Landsat TM and ETM+ | 2009–2011 | 30 m | USGS |
Shuttle Radar Topography Mission (SRTM) | 2000 | 30 m | NASA |
Water Occurrence | 1984–2016 | 30 m | JRC [29] |
Global Distribution of Mangroves USGS (v 1.3) | 1997–2000 | 30 m | Giri et al. [1] |
World Atlas of Mangroves (v 1.1) | 1999–2003 | 1:1,000,000 | Spalding et al. [2] |
Global Self-consistent Hierarchical High-resolution Shorelines (v 2.3.5) | - | “Full Resolution” | [30,31] |
GEBCO gridded bathymetry | 2014 | 30 arc-seconds | [32] |
Site | Number Points |
---|---|
Australia | 4347 |
Fiji | 6487 |
Haiti | 1356 |
Indonesia (1) | 1343 |
Indonesia (2) | 3717 |
Indonesia (3) | 144 |
Japan/Okinawa | 2742 |
Mexico (1) | 6948 |
Mexico (2) | 2167 |
Myanmar | 1106 |
Papua New Guinea | 854 |
Samoa | 90 |
Saudi Arabia | 339 |
India | 910 |
Tanzania (Rufiji Delta) | 3449 |
Tonga | 72 |
USA (Mississippi Delta) | 4590 |
USA (West Florida) | 5615 |
Venezuela | 1793 |
Vietnam | 5809 |
Total | 53,878 |
Region | GMW v2.0 (km2) | Percentage of Global (%) |
---|---|---|
Africa | 27,465 | 20.0 |
Asia | 53,278 | 38.7 |
Europe (Overseas Territories) | 1026 | 0.7 |
Latin America and the Caribbean | 27,939 | 20.3 |
North America | 11,563 | 8.4 |
Oceania | 16,329 | 11.9 |
Total | 137,600 |
Country | GMW v2.0 (km2) | Percentage of Global (%) |
---|---|---|
Indonesia | 26,890 | 19.5 |
Brazil | 11,072 | 8.1 |
Australia | 10,060 | 7.3 |
Mexico | 9537 | 6.9 |
Nigeria | 6958 | 5.1 |
Malaysia | 5201 | 3.8 |
Myanmar | 5011 | 3.6 |
Papua New Guinea | 4762 | 3.5 |
Bangladesh | 4163 | 3.0 |
India | 3521 | 2.6 |
Mangroves | Water | Terrestrial Other | User’s | |
---|---|---|---|---|
Mangroves | 18,246 | 98 | 370 | 97.5% |
Water | 191 | 16,463 | 101 | 98.3% |
Terrestrial Other | 969 | 828 | 16,612 | 90.2% |
Producer’s | 94.0% | 94.7% | 97.2% | 95.3% |
Region | GMW v2.0 (km2) 2010 | Giri et al. [1] (km2) 1997–2000 | Spalding et al. [2] (km2) 1999–2003 |
---|---|---|---|
Africa | 27,465 (20.0%) | 26,342 (19.1%) | 31,149 (20.5%) |
Asia | 53,278 (38.7%) | 55,068 (40.0%) | 60,435 (39.7%) |
Europe (Overseas Terr.) | 1026 (0.7%) | 1427 (1.0%) | 1194 (0.8%) |
Latin America and the Caribbean | 27,939 (20.3%) | 28,643 (20.8%) | 35,113 (23.1%) |
North America | 11,563 (8.4%) | 9739 (7.1%) | 12,492 (8.2%) |
Oceania | 16,329 (11.9%) | 16,380 (11.9%) | 11,735 (7.7%) |
Total | 137,600 | 137,599 (137,760) | 152,118 (152,361) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunting, P.; Rosenqvist, A.; Lucas, R.M.; Rebelo, L.-M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C.M. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sens. 2018, 10, 1669. https://doi.org/10.3390/rs10101669
Bunting P, Rosenqvist A, Lucas RM, Rebelo L-M, Hilarides L, Thomas N, Hardy A, Itoh T, Shimada M, Finlayson CM. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sensing. 2018; 10(10):1669. https://doi.org/10.3390/rs10101669
Chicago/Turabian StyleBunting, Pete, Ake Rosenqvist, Richard M. Lucas, Lisa-Maria Rebelo, Lammert Hilarides, Nathan Thomas, Andy Hardy, Takuya Itoh, Masanobu Shimada, and C. Max Finlayson. 2018. "The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent" Remote Sensing 10, no. 10: 1669. https://doi.org/10.3390/rs10101669
APA StyleBunting, P., Rosenqvist, A., Lucas, R. M., Rebelo, L. -M., Hilarides, L., Thomas, N., Hardy, A., Itoh, T., Shimada, M., & Finlayson, C. M. (2018). The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sensing, 10(10), 1669. https://doi.org/10.3390/rs10101669