New Geodetic and Gravimetric Maps to Infer Geodynamics of Antarctica with Insights on Victoria Land
Abstract
:1. Introduction
2. Data Availability
3. Methodology
3.1. Global Navigation Satellite System (GNSS) Data Analysis
3.2. Gravimetric Data Analysis
- (1)
- Earth and ocean tide corrections. These corrections are based on tidal parameter sets, or an ephemeris, that model the location of both the Moon and Sun celestial coordinates. The Solid Earth tide correction is a direct computation of the tidal potential [46]. The ocean tide correction is computed from loading parameters for the semidiurnal (M2, S2, N2, K2), diurnal (O1, P1, Q1, K1) and long-period (MF, Mm, Ssa) tidal harmonics [47]. The ocean-loading coefficients were provided from an external source, the free ocean provider (available at http://holt.oso.chalmers.se/loading/). Finally, the Solid Earth tide was removed from gravity measurements with a maximum correction of 0.5 µGal.
- (2)
- Pressure correction. Changes in atmospheric pressure imply variations in the mass of the air column above the gravity point of measurement. Thus, an increase (or decrease) in atmospheric pressure will cause a decrease (or increase) in the observed gravity.
- (3)
- Instrumental drift correction. Correction of gravimeter drift plays a significant role in the accuracy of all gravity surveys because it can reach up to 1 mGal/day. We calculated the instrument loop by a “loop approach”, which requires a base station as starting and final point of series of gravimetric measurements representing a single loop. For each loop, the base station was defined as the station with the longest time interval between repeated measurements. The drift effect was estimated by a least square fit of the weighted time series at this station with an nth order polynomial function. The weighting factor adopted was the inverse of the standard deviation associated with each measurement. In many cases, a first-order polynomial function was enough to remove short-term instrumental drift for loops with duration ranging from hours to a couple of days.
- (4)
- Network adjustment. Finally, data corresponding to series of relative gravity values were adjusted to a common reference point where absolute measurements collected near Mario Zucchelli station were provided [27].
4. Results
4.1. Free Air Gravity (FAG) Anomaly Interpretation
4.2. Bouguer Gravity (BG) Anomaly Interpretation
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Argus, D.F.; Peltier, W.R.; Drummond, R.; Moore, A.W. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based upon GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int. 2014, 198, 537–563. [Google Scholar] [CrossRef]
- Amalvict, M.; Willis, P.; Wöppelmann, G.; Ivins, E.R.; Bouin, M.-N.; Testut, L.; Hinderer, J. Isostatic stability of the East Antarctic station Dumont d’Urville from longterm geodetic observations and geophysical models. Polar Res. 2009, 28, 193–202. [Google Scholar] [CrossRef]
- King, M.A.; Altamimi, Z.; Boehm, J.; Bos, M.; Dach, R.; Elosegui, P.; Fund, F.; Hernández-Pajares, M.; Lavallée, D.; Mendes Cerveira, P.J.; et al. Improved constraints to models of glacial isostatic adjustment: A review of the contribution of ground-based geodetic observations. Surv. Geophys. 2010, 31, 465–507. [Google Scholar] [CrossRef]
- King, M.A.; Whitehouse, P.L.; Van der Wal, W. Incomplete separability of Antarctic plate rotation from glacial isostatic adjustment deformation within geodetic observations. Geophys. J. Int. 2016, 204, 324–330. [Google Scholar] [CrossRef]
- Thomas, I.D.; King, M.A.; Bentley, M.J.; Whitehouse, P.L.; Penna, N.T.; Williams, S.D.P.; Riva, R.E.M.; Lavallee, D.A.; Clarke, P.J.; King, E.; et al. Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Sjöberg, L.; Walyeldeen, H.; Horemuz, M. Estimation of crustal motions at the permanent GPS station SVEA, Antarctica from 2005 to 2009. J. Geod. Sci. 2011, 1, 215–220. [Google Scholar] [CrossRef]
- Bevis, M.; Kendrick, E.; Smalley, R., Jr.; Dalziel, I.; Caccamise, D.; Sasgen, I.; Helsen, M.; Taylor, F.W.; Zhou, H.; Brown, A.; et al. Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochem. Geophys. Geosyst. 2009, 10. [Google Scholar] [CrossRef] [Green Version]
- Capra, A.; Mancini, F.; Negusini, M. GPS as a geodetic tool for geodynamic in Northern Victoria Land, Antarctica. Antarct. Sci. 2007, 19, 107–114. [Google Scholar] [CrossRef]
- Mancini, F. Geodetic activities: A new GPS network for crustal deformation control in northern Victoria Land. Terra Antart. Rep. 2001, 5, 23–28. [Google Scholar]
- Zanutta, A.; Vittuari, L.; Gandolfi, S. Geodetic GPS-based analysis of recent crustal motions in Victoria Land (Antarctica). Glob. Planet. Chang. 2008, 62, 115–131. [Google Scholar] [CrossRef]
- Llubes, M.; Florsch, N.; Legresy, B.; Lemoine, J.-M.; Loyer, S.; Crossley, D.; Rémy, F. Crustal thickness in Antarctica from CHAMP gravimetry. Earth Planet. Sci. Lett. 2003, 212, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Hirt, C.; Rexer, M.; Scheinert, M.; Pail, R.; Claessens, S.; Holmes, S. A new degree-2190 (10 km resolution) gravity field model for Antarctica developed from GRACE, GOCE and Bedmap2 data. J. Geod. 2016, 90, 105–127. [Google Scholar] [CrossRef]
- Brockmann, J.M.; Zehentner, N.; Höck, E.; Pail, R.; Loth, I.; Mayer-Gürr, T.; Schuh, W.-D. EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys. Res. Lett. 2014, 41, 8089–8099. [Google Scholar] [CrossRef] [Green Version]
- Hirt, C.; Rexer, M.; Claessens, S.J. Topographic evaluation of fifthgeneration GOCE gravity field models—Globally and regionally. In: Special issue on validation of GOCE gravity fields. Newton’s Bull. 2015, 5, 163–186. [Google Scholar]
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.G.; Bamber, J.L.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved ice bed, surface and thickness data sets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Forsberg, R.; Olesen, A.V.; Yildiz, H.; Tscherning, C.C. Polar gravity fields from GOCE and airborne gravity. In Proceedings of the 4th International GOCE User Workshop European Space Agency, Munich, Germany, 31 March–1 April 2011. ESA SP-696. [Google Scholar]
- Scheinert, M.; Ferraccioli, F.; Schwabe, J.; Bell, R.; Studinger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.; et al. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica. Geophys. Res. Lett. 2016, 43, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Scheinert, M. Progress and prospects of the Antarctic Geoid Project (Commission Project 2.4). In Geodesy for Planet Earth; Kenyon, S., Pacino, M.C., Marti, U., Eds.; International Association of Geodesy Symposia; Springer: Berlin, Germany, 2012; Volume 136, pp. 451–456. [Google Scholar]
- Martín-Español, A.; Zammit-Mangion, A.; Clarke, P.J.; Flament, T.; Helm, V.; King, M.A.; Luthcke, S.B.; Petrie, E.; Rémy, F.; Nana, S.; et al. Spatial and temporal Antarctic Ice Sheet mass trends, glacio-isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. J. Geophys. Res. Earth Surf. 2016, 121, 182–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanutta, A.; Negusini, M.; Vittuari, L.; Cianfarra, P.; Salvini, F.; Mancini, F.; Sterzai, P.; Dubbini, M.; Galeandro, A.; Capra, A. Monitoring geodynamic activity in the Victoria Land, East Antarctica: Evidence from GNSS measurements. J. Geodyn. 2017. [Google Scholar] [CrossRef]
- Dubbini, M.; Cianfarra, P.; Casula, G.; Capra, A.; Salvini, F. Active tectonics in northern Victoria Land (Antarctica) inferred from the integration of GPS data and geologic setting. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Cianfarra, P.; Maggi, M. Cenozoic extension along the reactivated Aurora Fault System in the East Antarctic Craton. Tectonophysics 2017, 703, 135–153. [Google Scholar] [CrossRef]
- Salvini, F.; Brancolini, G.; Busetti, M.; Storti, F.; Mazzarini, F.; Coren, F. Cenozoic geodynamics of the Ross Sea region, Antarctica: Crustal extension, intraplate strikeslip faulting, and tectonic inheritance. J. Geophys. Res. 1997, 102, 24669–24696. [Google Scholar] [CrossRef]
- Storti, F.; Salvini, F.; Rossetti, F.; Phipps Morgan, J. Intraplate termination of transform faulting within the Antarctic continent. Earth Planet. Sci. Lett. 2007, 260, 115–126. [Google Scholar] [CrossRef]
- Jordan, T.A.; Ferraccioli, F.; Armadillo, E.; Bozzo, E. Crustal architecture of the Wilkes Subglacial Basin in East Antarctica, as revealed from airborne gravity data. Tectonophysics 2013, 585, 196–206. [Google Scholar] [CrossRef]
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software Version 5.2; User Manual; Astronomical Institute, University of Bern, Bern Open Publishing: Bern, Switzerland, 2015; ISBN 978-3-906813-05-9. [Google Scholar]
- Cerruti, G.; Alasia, F.; Geraiak, A.; Bozzo, E.; Caneva, G.; Lanza, R.; Marson, I. The Absolute Gravity Station and the Mt. Melbourne Gravity Network in Terra Nova Bay, North Victoria Land, East Antarctica. In Recent Progress in Antarctic Earth Science; Yoshida, Y., Ed.; TERRAPUB: Tokyo, Japan, 1992; pp. 589–593. [Google Scholar]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef] [Green Version]
- Gantar, C.; Zanolla, C. Gravity and Magnetic Exploration in the Ross Sea (Antarctica). Boll. Geofis. Teor. Appl. 1993, 35, 219–230. [Google Scholar]
- Makinen, J.; Amalvict, M.; Shibuya, K.; Fukuda, Y. Absolute gravimetry in Antarctica: Status and prospects. J. Geodyn. 2007, 43, 339–357. [Google Scholar] [CrossRef]
- Tenzer, R.; Chen, W.; Baranov, A.; Bagherbandi, M. Gravity Maps of Antarctic Lithospheric Structure from Remote-Sensing and Seismic Data. Pure Appl. Geophys. 2018, 175, 2181–2203. [Google Scholar] [CrossRef]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for medium-range weather forecasts operational analysis data. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negusini, M.; Petkov, B.H.; Sarti, P.; Tomasi, C. Ground-based water vapor retrieval in Antarctica: An assessment. IEEE Trans. Geosci. Remote Sens. 2016, 54. [Google Scholar] [CrossRef]
- Steigenberger, P.; Rothacher, M.; Dietrich, R.; Fritsche, M.; Rülke, A.; Vey, S. Reprocessing of a global GPS network. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Steigenberger, P.; Rothacher, M.; Fritsche, M.; Ruelke, A.; Dietrich, R. Quality of reprocessed GPS satellite orbits. J. Geod. 2009, 83, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Rothacher, M.; Angermann, D.; Artz, T.; Bosch, W.; Drewes, H.; Gerstl, M.; Kelm, R.; König, D.; König, R.; Meisel, B.; et al. GGOS-D: Homogeneous reprocessing and rigorous combination of space geodetic observations. J. Geod. 2011, 85, 679–705. [Google Scholar] [CrossRef]
- Tesmer, V.; Steigenberger, P.; Rothacher, M.; Boehm, J.; Meisel, B. Annual deformation signals from homogeneously reprocessed VLBI and GPS height time series. J. Geod. 2009, 83, 973–988. [Google Scholar] [CrossRef]
- Carrere, L.; Lyard, F.; Cancet, M.; Guillot, A.; Picot, N. FES 2014, a new tidal model—Validation results and perspectives for improvements. In Proceedings of the ESA Living Planet Conference, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Bos, M.S.; Fernandes, R.M.S.; Williams, S.D.P.; Bastos, L. Fast Error Analysis of Continuous GNSS Observations with Missing Data. J. Geod. 2013, 87, 351–360. [Google Scholar] [CrossRef]
- Sasgen, I.; Martín-Español, A.; Horvath, A.; Klemann, V.; Petrie, E.J.; Wouters, B.; Horwath, M.; Pail, R.; Bamber, J.L.; Clarke, P.J.; et al. Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE Project REGINA). Earth Syst. Sci. Data 2018, 10, 493–523. [Google Scholar] [CrossRef] [Green Version]
- Riva, R.E.M.; Gunter, B.C.; Urban, T.J.; Vermeersen, L.L.A.; Lindenbergh, R.C.; Helsen, M.M.; Bamber, J.L.; van de Wal, R.S.W.; van den Broeke, M.R.; Schutz, B.E. Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth Planet. Sci. Lett. 2009, 288, 516–523. [Google Scholar] [CrossRef]
- Riva, R.E.M.; Frederikse, T.; King, M.A.; Marzeion, B.; van den Broeke, M. Brief communication: The global signature of post-1900 land ice wastage on vertical land motion. Cryosphere 2016. [Google Scholar] [CrossRef]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. 2012, 117, B04406. [Google Scholar] [CrossRef]
- Munk, W.H.; Cartwright, D.E. Tidal spectroscopy and prediction. Philos. Trans. R. Soc. Lond. A 1966, 259, 533–581. [Google Scholar] [CrossRef]
- Agnew, D.C. Earth tides. In Treatise on Geophysics and Geodesy; Herring, T., Ed.; Elsevier: New York, NY, USA, 2007; Volume 3, pp. 163–195. ISBN 978-0-444-53460-6. [Google Scholar]
- Lowrie, W. Fundamentals of Geophysics; Cambridge University Press: Cambridge, UK, 2004; ISBN 0-521-46164-2. [Google Scholar]
- Cassinis, G.; Dore, P.; Ballarin, S. Fundamental Tables for Reducing Gravity Observed Values; Tipografia Legatoria Mario Ponzio: Pavia, Italy, 1937; pp. 11–27. [Google Scholar]
- Liu, H.; Jezek, K.C.; Li, B.; Zhao, Z. Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2; NASA National Snow and Ice Data Center, Distributed Active Archive Center: Boulder, CO, USA, 2015. [Google Scholar]
- Forsberg, R.; Tscherning, C.C. Overview Manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs, 2nd ed.; Technical Report; DTU-Space: Kongens Lyngby, Denmark, 2008. [Google Scholar]
- Baranov, A.; Tenzer, R.; Bagherbandi, M. Combined gravimetric-seismic crustal model for Antarctica. Surv. Geophys. 2018, 39, 23–56. [Google Scholar] [CrossRef]
- Goudarzi, M.; Cocard, M.; Santerre, R. EPC: Matlab software to estimate Euler pole parameters. GPS Solut. 2014, 18, 153–162. [Google Scholar] [CrossRef]
- Altamimi, Z.; Métivier, L.; Rebischung, P.; Rouby, H.; Collilieux, X. ITRF2014 plate motion model. Geophys. J. Int. 2017, 209, 1906–1912. [Google Scholar] [CrossRef]
- Fowler, C.M.R. The Solid Earth: An Introduction to Global Geophysics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005; pp. 205–206. ISBN 0-521-89307-0. [Google Scholar]
- Ferraccioli, F.; Bozzo, E.; Capponi, G. Aeromagnetic and gravity anomaly constraints for an early Paleozoic subduction system of Victoria Land, Antarctica. Geophys. Res. Lett. 2002, 29, 44.1–44.4. [Google Scholar] [CrossRef]
- Aitken, A.R.A.; Wilson, G.S.; Jordan, T.; Tinto, K.; Blakemore, H. Flexural controls on late Neogene basin evolution in southern McMurdo Sound, Antarctica. Glob. Planet. Chang. 2012, 80–81, 99–112. [Google Scholar] [CrossRef]
- Lesti, C.; Giordano, G.; Salvini, F.; Cas, R. Volcano tectonic setting of the intraplate, Pliocene-Holocene, Newer Volcanic Province (southeast Australia): Role of crustal fracture zones. J. Geophys. Res. 2008, 113, B07407. [Google Scholar] [CrossRef]
- Müller, R.D.; Sdrolias, M.; Gaina, C.; Roest, W.R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 2008, 9, Q04006. [Google Scholar] [CrossRef]
- Cianfarra, P.; Salvini, F. Origin of the Adventure Subglacial Trench linked to Cenozoic extension in the East Antarctic Craton. Tectonophysics 2016, 670, 30–37. [Google Scholar] [CrossRef]
- Tabacco, I.E.; Cianfarra, P.; Forieri, A.; Salvini, F.; Zirizotti, A. Physiography and tectonic setting of the subglacial lake district between Vostok and Belgica subglacial highlands (Antarctica). Geophys. J. Int. 2006, 165, 1029–1040. [Google Scholar] [CrossRef] [Green Version]
- Cianfarra, P.; Forieri, A.; Salvini, F.; Tabacco, I.E.; Zirizotti, A. Geological setting of the Concordia Trench-Lake system in East Antarctica. Geophys. J. Int. 2009, 177, 1305–1314. [Google Scholar] [CrossRef] [Green Version]
- Whitehouse, P.L.; Bentley, M.J.; Le Brocq, A.M. A deglacial model for Antarctica: Geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Quat. Sci. Rev. 2012, 32, 1–24. [Google Scholar] [CrossRef]
- Whitehouse, P.L.; Bentley, M.J.; Milne, G.A.; King, M.A.; Thomas, I.D. A new glacial isostatic adjustment model for Antarctica: Calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys. J. Int. 2012, 190, 1464–1482. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F. Free software helps map and display data. EOS Trans. Am. Geophys. Union 1991, 72, 441–446. [Google Scholar] [CrossRef]
ID\yr | 98 | 99 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TNB1 | 39 | 181 | 331 | 361 | 334 | 356 | 330 | 329 | 362 | 275 | 44 | 18 | 208 | 364 | 167 | 322 | 90 | 84 | 365 | 341 |
VL01 | - | 2 | - | - | 18 | 88 | 63 | 116 | 8 | - | 35 | 100 | 104 | 47 | 106 | 136 | 109 | 365 | 366 | 365 |
VL02 | - | 6 | 2 | - | 1 | 19 | - | 4 | 8 | - | - | - | - | - | 14 | - | 16 | - | - | - |
VL03 | - | 6 | 2 | - | - | 16 | - | 3 | 19 | - | 10 | - | - | - | 12 | - | 33 | - | - | - |
VL04 | - | - | - | - | 3 | 16 | - | 3 | 2 | - | - | - | 16 | - | - | - | 17 | - | - | - |
VL05 | - | 4 | - | - | 21 | 43 | 34 | 26 | 37 | - | 49 | 101 | 89 | 117 | 91 | 67 | 118 | 73 | 65 | 76 |
VL06 | - | - | 1 | - | - | 15 | 36 | - | 17 | - | - | - | - | - | 21 | 5 | 21 | 25 | - | - |
VL07 | - | 4 | 5 | - | 6 | 15 | - | 7 | 10 | - | 7 | - | 15 | - | 15 | - | 33 | - | - | - |
VL08 | - | - | 6 | - | - | 9 | - | - | 13 | - | 9 | - | - | - | 6 | - | 4 | 23 | - | - |
VL09 | - | 6 | 2 | - | - | 19 | - | - | 13 | - | 5 | - | - | - | 9 | - | 13 | - | - | - |
VL10 | - | 4 | 4 | - | - | 25 | 34 | 11 | 33 | - | 4 | - | - | - | - | - | 12 | - | - | - |
VL11 | - | - | 4 | - | - | 7 | - | - | 17 | - | - | - | - | 4 | 6 | - | 13 | - | - | - |
VL12 | - | 6 | 2 | - | 5 | 52 | 55 | 26 | 36 | - | 10 | - | - | - | 7 | - | 15 | 365 | 366 | 365 |
VL13 | - | 2 | 7 | - | - | 10 | - | - | 13 | - | 7 | - | 7 | - | 13 | - | 3 | 29 | - | - |
VL14 | - | 10 | 2 | - | - | 45 | 34 | 26 | 26 | - | 5 | - | 4 | - | 15 | - | 10 | - | - | - |
VL15 | - | - | 6 | - | - | 18 | - | - | 7 | - | - | 2 | 17 | 4 | 14 | - | - | 26 | - | - |
VL16 | - | - | 8 | - | - | 15 | 11 | - | 13 | - | 7 | 1 | 5 | 1 | - | - | 20 | - | - | - |
VL17 | - | - | 6 | - | - | 27 | 46 | - | 13 | - | - | 1 | - | 5 | - | - | 3 | 30 | - | - |
VL18 | - | - | 4 | - | - | 11 | 7 | - | 13 | - | - | 1 | 128 | 133 | 53 | 148 | 145 | 129 | 130 | 60 |
VL19 | - | - | 4 | - | - | 9 | 52 | - | 11 | - | - | 1 | 26 | - | - | - | 2 | 8 | - | - |
VL21 | - | 4 | 1 | - | 2 | 2 | - | 10 | - | - | 3 | - | 3 | - | 8 | - | 20 | 3 | - | - |
VL22 | - | 2 | 3 | - | 5 | 2 | - | 9 | - | - | 5 | - | - | - | 6 | - | 21 | 3 | - | - |
VL23 | - | - | - | - | - | 40 | 26 | 4 | 2 | - | - | - | - | - | 13 | - | 15 | - | - | - |
VL29 | - | 1 | 3 | - | 3 | 2 | - | 11 | - | - | - | - | - | - | 9 | - | 21 | 3 | - | - |
VL30 | - | - | 2 | - | 3 | 2 | - | 5 | - | - | - | - | - | - | 9 | - | 11 | 365 | 366 | 365 |
VL32 | - | 2 | - | - | 13 | 2 | - | 13 | 9 | - | - | - | - | - | 16 | - | 18 | - | - | - |
VLHG | - | - | 2 | - | - | - | - | 22 | 21 | - | - | - | - | - | - | - | - | 26 | - | - |
Solid Earth tide | IERS Conventions |
Permanent tide | Conventional tide free system: IERS Conventions |
Ocean Tides | FES2004 (a) |
Pole Tides | Linear trend for mean pole offsets: IERS Conventions |
Ocean Loading | FES2014b + TPXO8-Atlas including the CoM correction for the motion of the Earth due to the ocean tides (b) |
Atmospheric Loading | Not applied |
A priori information | IGS weekly ERP files (X-pole. Y-Pole, UT1-UTC) used with IGS Precise orbits IG2 (c)/IGS (d) |
Subdaily EOP Model | IERS2010 |
Nutation | IAU2000R06 |
Hydrostatic delay | Computed from 6-hourly ECMWF grids (e) |
Mapping functions | VMF1 |
Wet delay | Zero a priori model, 1 –h parameter estimated |
Gradients | Zero a priori values, 24-h parameter estimated |
Phase center model | igs14.atx (e) |
Radome Calibrations | igs14.atx (e) |
Antenna height | igs.snx (e) |
Horizontal offsets | Applied |
A priori radiation pressure | C061001 |
A priori ionosphere model | CODE GIMs (f) |
Absolute Velocities (mm/yr) | Relative Velocities (mm/yr) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | Lon. (°) | Lat. (°) | H (m) | Ve | ±σe | Vn | ±σn | Vu | ±σu | Ve | Vn | Ven | ±σen |
TNB1 | 164.10294 | −74.69881 | 72.2 | 10 | 0.15 | −12.1 | 0.16 | 0.5 | 0.39 | −0.01 | −0.25 | 0.25 | 0.22 |
VL01 | 169.72507 | −72.45014 | 596.9 | 12.1 | 0.18 | −11.7 | 0.22 | −0.4 | 0.45 | 0.33 | −0.34 | 0.47 | 0.28 |
VL02 | 167.37814 | −72.56488 | 2047.2 | 11.7 | 0.24 | −10.7 | 0.2 | −0.4 | 0.38 | 0.44 | 0.82 | 0.93 | 0.31 |
VL03 | 162.92641 | −72.95051 | 2469.6 | 11 | 0.23 | −12 | 0.26 | −0.4 | 0.5 | 0.73 | −0.04 | 0.73 | 0.35 |
VL04 | 169.74865 | −73.51821 | 1834.6 | 11.8 | 0.18 | −11.9 | 0.18 | −1.3 | 0.46 | 0.31 | −0.59 | 0.67 | 0.25 |
VL05 | 169.61219 | −73.06307 | 478.5 | 11.8 | 0.16 | −11.4 | 0.21 | −0.8 | 0.33 | 0.24 | −0.07 | 0.25 | 0.26 |
VL06 | 164.69065 | −74.35000 | 2671 | 10.4 | 0.18 | −12 | 0.17 | 0.8 | 0.55 | 0.18 | −0.17 | 0.25 | 0.25 |
VL07 | 165.37930 | −73.75990 | 2039.2 | 9.9 | 0.28 | −11.8 | 0.13 | −1.4 | 0.61 | −0.65 | −0.07 | 0.65 | 0.31 |
VL08 | 163.73953 | −73.76428 | 2655.4 | 10.5 | 0.15 | −11.9 | 0.37 | 0.9 | 0.38 | 0.27 | −0.03 | 0.27 | 0.40 |
VL09 | 162.16939 | −73.33078 | 2270.4 | 10.1 | 0.23 | −11.9 | 0.23 | 0.4 | 0.47 | 0.06 | 0.09 | 0.11 | 0.33 |
VL10 | 162.76859 | −73.68846 | 2619.4 | 9.8 | 0.24 | −11.9 | 0.26 | −0.4 | 0.56 | −0.22 | 0.13 | 0.26 | 0.35 |
VL11 | 162.54167 | −74.37143 | 2362.3 | 9.8 | 0.25 | −11.5 | 0.14 | −0.8 | 0.25 | −0.03 | 0.5 | 0.50 | 0.29 |
VL12 | 163.72700 | −72.27444 | 1933 | 10.9 | 0.12 | −12.8 | 0.25 | 0.5 | 0.42 | 0.21 | −0.9 | 0.92 | 0.28 |
VL13 | 162.20497 | −74.84780 | 1460.3 | 9.2 | 0.21 | −11.6 | 0.15 | 0 | 0.31 | −0.36 | 0.45 | 0.58 | 0.26 |
VL14 | 165.90570 | −73.22825 | 2084 | 11.3 | 0.21 | −12 | 0.25 | −0.8 | 0.48 | 0.53 | −0.27 | 0.59 | 0.33 |
VL15 | 163.71567 | −74.93426 | −28.1 | 9.4 | 0.26 | −12 | 0.13 | 0.5 | 0.38 | −0.46 | −0.08 | 0.47 | 0.29 |
VL16 | 162.54549 | −75.23256 | 311.3 | 10.1 | 0.23 | −12.4 | 0.16 | 0.6 | 0.42 | 0.54 | −0.43 | 0.69 | 0.28 |
VL17 | 161.53874 | −75.09513 | 683.5 | 8.8 | 0.27 | −11.9 | 0.13 | 0.7 | 0.36 | −0.54 | 0.2 | 0.58 | 0.30 |
VL18 | 162.59371 | −75.89853 | 58 | 9.1 | 0.15 | −11.9 | 0.2 | 1 | 0.35 | −0.18 | 0.05 | 0.19 | 0.25 |
VL19 | 161.78161 | −75.80497 | 809.8 | 8.8 | 0.14 | −11.8 | 0.19 | 0.9 | 0.45 | −0.34 | 0.23 | 0.41 | 0.24 |
VL21 | 163.73293 | −71.66866 | 1899.4 | 8.4 | 0.52 | −11.7 | 0.22 | 1 | 0.15 | −2.49 | 0.23 | 2.50 | 0.56 |
VL22 | 162.04043 | −71.42187 | 274.9 | 10.7 | 0.19 | −12.1 | 0.25 | 2.5 | 0.19 | 0.12 | −0.04 | 0.13 | 0.31 |
VL23 | 170.30467 | −71.34582 | 1119 | 12.6 | 0.21 | −11.3 | 0.33 | 0.3 | 0.22 | 0.41 | −0.05 | 0.41 | 0.39 |
VL29 | 163.89628 | −71.15408 | 1624.4 | 11.3 | 0.05 | −11.9 | 0.29 | 2.8 | 0.53 | 0.25 | −0.01 | 0.25 | 0.29 |
VL30 | 162.52514 | −70.59872 | 1491.5 | 10.6 | 0.24 | −12.6 | 0.23 | 1.4 | 0.46 | −0.31 | −0.59 | 0.67 | 0.33 |
VL32 | 166.16457 | −71.73310 | 1784 | 12.2 | 0.3 | −12.5 | 0.37 | 0.7 | 0.31 | 0.88 | −0.86 | 1.23 | 0.48 |
VLHG | 162.20172 | −75.39797 | 165.6 | 9.2 | 0.17 | −12.2 | 0.11 | 0.5 | 0.28 | −0.24 | −0.16 | 0.29 | 0.20 |
Model | NS (a) | ωx (mas yr−1) | ωy (mas yr−1) | ωz (mas yr−1) | ω (° Myr−1) |
---|---|---|---|---|---|
VLNDEF_2018 | 95 | −0.260 ±0.005 | −0.325 ±0.004 | 0.638 ±0.016 | 0.212 ±0.004 |
ITRF14 (b) | 7 | −0.248 ±0.004 | −0.324 ±0.004 | 0.675 ±0.008 | 0.219 ±0.002 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanutta, A.; Negusini, M.; Vittuari, L.; Martelli, L.; Cianfarra, P.; Salvini, F.; Mancini, F.; Sterzai, P.; Dubbini, M.; Capra, A. New Geodetic and Gravimetric Maps to Infer Geodynamics of Antarctica with Insights on Victoria Land. Remote Sens. 2018, 10, 1608. https://doi.org/10.3390/rs10101608
Zanutta A, Negusini M, Vittuari L, Martelli L, Cianfarra P, Salvini F, Mancini F, Sterzai P, Dubbini M, Capra A. New Geodetic and Gravimetric Maps to Infer Geodynamics of Antarctica with Insights on Victoria Land. Remote Sensing. 2018; 10(10):1608. https://doi.org/10.3390/rs10101608
Chicago/Turabian StyleZanutta, Antonio, Monia Negusini, Luca Vittuari, Leonardo Martelli, Paola Cianfarra, Francesco Salvini, Francesco Mancini, Paolo Sterzai, Marco Dubbini, and Alessandro Capra. 2018. "New Geodetic and Gravimetric Maps to Infer Geodynamics of Antarctica with Insights on Victoria Land" Remote Sensing 10, no. 10: 1608. https://doi.org/10.3390/rs10101608
APA StyleZanutta, A., Negusini, M., Vittuari, L., Martelli, L., Cianfarra, P., Salvini, F., Mancini, F., Sterzai, P., Dubbini, M., & Capra, A. (2018). New Geodetic and Gravimetric Maps to Infer Geodynamics of Antarctica with Insights on Victoria Land. Remote Sensing, 10(10), 1608. https://doi.org/10.3390/rs10101608