Next Article in Journal
Evaluation and Intercomparison of High-Resolution Satellite Precipitation Estimates—GPM, TRMM, and CMORPH in the Tianshan Mountain Area
Previous Article in Journal
Detecting Areas Vulnerable to Sand Encroachment Using Remote Sensing and GIS Techniques in Nouakchott, Mauritania
Previous Article in Special Issue
Deformable Faster R-CNN with Aggregating Multi-Layer Features for Partially Occluded Object Detection in Optical Remote Sensing Images
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2018, 10(10), 1542; https://doi.org/10.3390/rs10101542

Impact of the Acquisition Geometry of Very High-Resolution Pléiades Imagery on the Accuracy of Canopy Height Models over Forested Alpine Regions

1
Department of Geodesy and Geoinformation, TU Wien, 1040 Wien Austria
2
Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, 8903 Birmensdorf, Switzerland
*
Author to whom correspondence should be addressed.
Received: 11 August 2018 / Revised: 13 September 2018 / Accepted: 21 September 2018 / Published: 25 September 2018
Full-Text   |   PDF [17755 KB, uploaded 26 September 2018]   |  

Abstract

This work focuses on the accuracy estimation of canopy height models (CHMs) derived from image matching of Pléiades stereo imagery over forested mountain areas. To determine the height above ground and hence canopy height in forest areas, we use normalised digital surface models (nDSMs), computed as the differences between external high-resolution digital terrain models (DTMs) and digital surface models (DSMs) from Pléiades image matching. With the overall goal of testing the operational feasibility of Pléiades images for forest monitoring over mountain areas, two questions guide this work whose answers can help in identifying the optimal acquisition planning to derive CHMs. Specifically, we want to assess (1) the benefit of using tri-stereo images instead of stereo pairs, and (2) the impact of different viewing angles and topography. To answer the first question, we acquired new Pléiades data over a study site in Canton Ticino (Switzerland), and we compare the accuracies of CHMs from Pléiades tri-stereo and from each stereo pair combination. We perform the investigation on different viewing angles over a study area near Ljubljana (Slovenia), where three stereo pairs were acquired at one-day offsets. We focus the analyses on open stable and on tree covered areas. To evaluate the accuracy of Pléiades CHMs, we use CHMs from aerial image matching and airborne laser scanning as reference for the Ticino and Ljubljana study areas, respectively. For the two study areas, the statistics of the nDSMs in stable areas show median values close to the expected value of zero. The smallest standard deviation based on the median of absolute differences (σMAD) was 0.80 m for the forward-backward image pair in Ticino and 0.29 m in Ljubljana for the stereo images with the smallest absolute across-track angle (−5.3°). The differences between the highest accuracy Pléiades CHMs and their reference CHMs show a median of 0.02 m in Ticino with a σMAD of 1.90 m and in Ljubljana a median of 0.32 m with a σMAD of 3.79 m. The discrepancies between these results are most likely attributed to differences in forest structure, particularly tree height, density, and forest gaps. Furthermore, it should be taken into account that temporal vegetational changes between the Pléiades and reference data acquisitions introduce additional, spurious CHM differences. Overall, for narrow forward–backward angle of convergence (12°) and based on the used software and workflow to generate the nDSMs from Pléiades images, the results show that the differences between tri-stereo and stereo matching are rather small in terms of accuracy and completeness of the CHM/nDSMs. Therefore, a small angle of convergence does not constitute a major limiting factor. More relevant is the impact of a large across-track angle (19°), which considerably reduces the quality of Pléiades CHMs/nDSMs. View Full-Text
Keywords: very high-resolution Pléiades imagery; canopy height model; acquisition geometry; forested mountain; accuracy assessment very high-resolution Pléiades imagery; canopy height model; acquisition geometry; forested mountain; accuracy assessment
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Piermattei, L.; Marty, M.; Karel, W.; Ressl, C.; Hollaus, M.; Ginzler, C.; Pfeifer, N. Impact of the Acquisition Geometry of Very High-Resolution Pléiades Imagery on the Accuracy of Canopy Height Models over Forested Alpine Regions. Remote Sens. 2018, 10, 1542.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top