Enhanced Automated Canopy Characterization from Hyperspectral Data by a Novel Two Step Radiative Transfer Model Inversion Approach
Abstract
:1. Introduction
2. The CRASh Radiative Transfer Model Inversion Approach
2.1. Methodological Overview
2.2. The Radiative Transfer Model
2.3. Land Cover Classification
Class | |||||||
---|---|---|---|---|---|---|---|
Snow | b4/b3 ≤ 1.3 | AND | b3 ≥ 0.2 | AND | b5 ≤ 0.12 | ||
Cloud | b4 ≥ 0.25 | AND | 0.85 ≤ b1/b4 ≤ 1.15 | AND | b4/b5 ≥ 0.9 | AND | … |
b5 ≥ 0.2 | |||||||
Bare Soil (bright) | b4 ≥ 0.15 | AND | 1.3 ≤ b4/b3 ≤ 3.0 | ||||
Bare Soil (dark) | b4 ≥ 0.15 | AND | 1.3 ≤ b4/b3 ≤ 3.0 | AND | b2 ≤ 0.10 | ||
Average vegetation | b4/b3 ≥ 3.0 | AND | (b1/b3 ≥ 0.8 OR b3 ≤ 0.15) | AND | 0.28 ≤ b4 ≤ 0.4 | AND | … |
b3 ≤ 0.055 | |||||||
Bright vegetation | b4/b3 ≥ 3.0 | AND | (b1/b3 ≥ 0.8 OR b3 ≤ 0.15) | AND | b4 ≥ 0.4 | ||
Dark vegetation | b4/b3 ≥ 3.0 | AND | (b1/b3 ≥ 0.8 OR b3 ≤ 0.15) | AND | b3 ≤ 0.08 | AND | … |
b4 ≤ 0.28 | |||||||
Yellow vegetation | b4/b3 ≥ 2.0 | AND | b2 ≥_b3 | AND | b3 ≥ 8.0 | AND | … |
b4/b5 ≥ 1.5 a | |||||||
Mix vegetation/soil | 2.0 ≤ b4/b3 ≤ 3.0 | AND | 5.0 ≤ b3 ≤ 15.0 | AND | b4 ≥ 15.0 | ||
Asphalt/dark sand | b4/b3 ≤ 1.6 | AND | 5.0 ≤ b3 ≤ 20.0 | AND | 5.0 ≤ b4 ≤ 20.0a | AND | … |
5.0 ≤ b5 ≤ 25.0 | AND | b5/b4 ≥ 0.7a | |||||
Sand/bare soil/cloud | b4/b3 ≤ 2.0 | AND | b4 ≥ 0.15 | AND | b5 ≥ 15.0a | ||
Bright sand/Soil/cloud | b4/b3 ≤ 2.0 | AND | b4 ≥ 0.15 | AND | (b4 ≥ 0.25b | OR | … |
b5 ≥ 0.30b) | |||||||
Dry vegetation / Soil | 1.7 ≤ b4/b3 ≤ 2.0 | AND | b4 ≥ 0.25c | OR | (1.4 ≤ b4/b3 ≤ 2.0 | AND | … |
b7/b5 ≤ 0.83c) | |||||||
Sparse vegetation / Soil | 1.4 ≤ b4/b3 ≤ 1.7 | AND | b4 ≥ 0.25c | OR | (1.4 ≤ b4/b3 ≤ 2.0 | AND | … |
b7/b5 ≤ 0.83 | AND | b5/b4 ≥ 1.2c) | |||||
Turbid Water | b4 ≤ 0.11 | AND | b5 ≤ 0.05a | ||||
Clear Water | b4 ≤ 0.02 | AND | b5 ≤ 0.02a | ||||
Clear water over sand | b3 ≥ 0.02 | AND | b3 ≥ b4 + 0.005 | AND | b5 ≤ 0.02a |
2.4. Lookup Table Inversion
2.4.1. Lookup table generation
2.4.2. Exploiting radiometric information
2.4.3. Using predictive equations for a first guess solution
2.4.4. Minimizing for first guess of the solution and defining the final solution
3. Testing Model Performance
3.1. Synthetic Data Sets
Leaf variables | Unit | Values |
---|---|---|
Cab | μg·cm2 | 30.0, 50.0, 70.0 |
Cw | g·cm2 | 0.0280 |
Cdm | g·cm2 | 0.0070 |
Cbp | - | 0.001 |
N | - | 1.1, 1.7, 2.3 |
Canopy variables | ||
LAI | m2·m2 | 0.5, 1.5, 3.0, 4.5, 6.0 |
ALA | ° | 50.0, 57.0, 64.0 |
HS | - | 0.1 |
BS | - | 0.7, 1.3 |
Leaf variables | Unit | Distribution type | Minimum | Maximum | Mean | σ | # intervals |
---|---|---|---|---|---|---|---|
Cab | μg·cm−2 | After [26] | 1 | 100 | - | - | 6 |
Cw | g·cm−2 | Uniform | 0.0050 | 0.0800 | - | - | 4 |
Cdm | g·cm−2 | Uniform | 0.0020 | 0.020 | - | - | 4 |
Cbp | - | Gaussian | 0 | 1.5 | 0.001 | 0.6 | 3 |
N | - | Gaussian | 1 | 4.5 | 1.5 | 1 | 3 |
Canopy variables | |||||||
LAI | m2.m−2 | After [26] | 0 | 9 | - | - | 6 |
ALA | ° | Gaussian | 20 | 85 | 57 | 20 | 5 |
HS | - | Gaussian | 0.001 | 1 | 0.1 | 0.3 | 5 |
BS | - | Gaussian | 0.3 | 1.3 | 0.8 | 0.3 | 3 |
3.2. Inversion of Field Spectra for Temperate Grassland Characterization
3.2.1. Test site
3.2.2. Biometric sampling
Measured variables | Min | Mean | Max | StDev | |
---|---|---|---|---|---|
Cw | (g cm-2) | 0.0188 | 0.0231 | 0.0264 | 0.0024 |
Cdm | (g cm-2) | 0.0051 | 0.0093 | 0.0135 | 0.0023 |
LAI | (m2 m-2) | 0.57 | 2.39 | 6.83 | 1.71 |
3.2.3. Field spectrometer measurements and RTM inversion
4. Results and Discussion
4.1. Synthetic Data Sets
Perfect model assumption | Including uncertainties on model, atmosphere and sensor | |||||||
---|---|---|---|---|---|---|---|---|
CRASh approach | Spectral RMSE | CRASh approach | Spectral RMSE | |||||
Leaf variables | RMSE | Bias | RMSE | Bias | RMSE | Bias | RMSE | Bias |
Cab | 29.0 | 11.7 | 46.9 | 40.5 | 31.5 | 13.6 | 46.9 | 38.7 |
Cw | 36.8 | -3.6 | 58.7 | 40.3 | 36.0 | -2.4 | 59.5 | 37.2 |
Cdm | 53.6 | 40.0 | 86.5 | 81.4 | 54.6 | 36.6 | 85.5 | 79.1 |
N | 33.5 | 20.4 | 74.4 | 70.7 | 33.0 | 19.5 | 74.3 | 70.1 |
Canopy variables | ||||||||
LAI | 23.7 | -13.3 | 21.2 | -0.2 | 24.3 | -11.8 | 23.9 | 2.2 |
ALA | 20.5 | -13.4 | 19.6 | -12.5 | 20.6 | -13.1 | 20.2 | -12.2 |
HS | 74.0 | 71.0 | 433.1 | 429.6 | 78.0 | 71.3 | 429.9 | 425.0 |
BS | 33.6 | -16.5 | 28.4 | -11.6 | 34.3 | -17.4 | 29.4 | -12.3 |
4.2. Field Spectrometer Measurements
CRASh approach | Spectral RMSE | |||||
---|---|---|---|---|---|---|
Absolute RMSE | Relative RMSE | Relative Bias | Absolute RMSE | Relative RMSE | Relative Bias | |
Cw | 0.0080 g·cm-2 | 34.5 % | -15.3 % | 0.0052 g·cm-2 | 22.4 % | 2.0% |
Cdm | 0.0030 g·cm-2 | 32.8 % | -0.1 % | 0.0035 g·cm-2 | 37.4 % | 28.4 % |
LAI | 0.832 m2·m-2 | 34.8 % | 5.6 % | 1.355 m2·m-2 | 56.7 % | 38.9 % |
4.3. Land Cover Classification
4.4. A Priori Estimates of the Solution
SPECL class | Number of spectra allocated to class: | Variable | Regression function | R2 | RMSE |
---|---|---|---|---|---|
2 | MEA1: 0 | N [–] | 2.504 − 0.134 · MTCI | 0.32 | 0.61 |
Dark | MEA2: 3 | Cab [μg·cm−2] | 16.961 · (127.750REIP1) − 1.076 | 0.78 | 12.6 |
vegetation | Cw [g·cm−2] | 0.028 + 0.425·LWVI1 | 0.66 | 0.0097 | |
Cdm [g·cm−2] | 0.011 − 0.082 · LWVI1 | 0.50 | 0.0029 | ||
Cbp [-] | 0.932 − 0.027 · TVI | 0.47 | 0.296 | ||
LAI [m2·m−2] | 0.842 · (14.833RDVI) − 1.076 | 0.76 | 0.81 | ||
ALA [°] | 70.684 − 40.739 · MTVI1 | 0.55 | 9.8 | ||
HS [–] | 0.237 · (1.138MCARI1) − 0.143 | 0.09 | 0.055 | ||
BS [–] | 0.054 + 0.582 · (1.22GI) | 0.14 | 0.20 | ||
3 | MEA1: 3 | N [–] | −0.032 · (1.467SR705) + 1.860 | 0.22 | 0.41 |
Average | MEA2: 1 | Cab [μg·cm−2] | 17.843 · (140.726REIP1) − 564.621 | 0.86 | 11.7 |
vegetation | Cw [g·cm−2] | 0.016 + 0.202 · LWVI2 | 0.67 | 0.0118 | |
Cdm [g·cm−2] | 0.014 − 0.113 · LWVI1 | 0.57 | 0.0039 | ||
Cbp [-] | – | ||||
LAI [m2·m−2] | 0.024 · (13.069RDVI) − 1.322 | 0.76 | 0.94 | ||
ALA [°] | 69.561 − 0.881 · TVI | 0.52 | 9.1 | ||
HS [–] | 0.115 + 0.001 · TVI | 0.10 | 0.080 | ||
BS [–] | 0.403 · (1.201GI) + 0.263 | 0.11 | 0.20 | ||
4 | MEA1: 7 | N [–] | −0.097 · (1.324SR705) + 2.017 | 0.28 | 0.40 |
Bright | MEA2: 0 | Cab [μg·cm−2] | −42.007 + 178.939·LCI | 0.88 | 10.8 |
vegetation | Cw [g·cm−2] | −0.006 + 0.323 · LWVI2 | 0.87 | 0.0101 | |
Cdm [g·cm−2] | 0.016 − 0.111 · LWVI1 | 0.58 | 0.0047 | ||
Cbp [-] | – | ||||
LAI [m2·m−2] | 1.279 · (8.922RDVI) − 0.628 | 0.48 | 1.369 | ||
ALA [°] | 78.459 − 1.201 · TVI | 0.60 | 8.5 | ||
HS [–] | 0.106 + 0.0024 · TVI | 0.16 | 0.082 | ||
BS [–] | 0.054 + 0.582 · (1.22GI) | 0.07 | 0.20 | ||
6 | MEA1: 3 | N [–] | 0.904 · (1.618MTVI1) + 0.969 | 0.14 | 0.62 |
Mix soil / | MEA2: 2 | Cab [μg·cm−2] | 10.035 + 96.910·LCI | 0.59 | 16.3 |
vegetation | Cw [g·cm−2] | 0.025 · (39.335LWVI2) − 0.001 | 0.43 | 0.0112 | |
Cdm [g·cm−2] | 0.016 − 0.150 · LWVI1 | 0.47 | 0.0058 | ||
Cbp [-] | −0.0004 · (1.217TVI) + 0.239 | 0.47 | 0.296 | ||
LAI [m2·m−2] | 1.689 · (2.557TSAVI) − 1.500 | 0.79 | 0.48 | ||
ALA [°] | 68.267 − 1.115 · TVI | 0.55 | 9.8 | ||
HS [–] | 9.264e−006 · (1.301TVI) + 0.161 | 0.09 | 0.055 | ||
BS [–] | 0.838 + 0.056·GI | 0.14 | 0.20 |
Absolute RMSE | Relative RMSE | Relative Bias | |
---|---|---|---|
Cw | 0.0155 g·cm−2 | 67.3% | 51.3% |
Cdm | 0.0033 g·cm−2 | 36.0% | −1.1% |
LAI | 1.185 m2·m−2 | 49.6% | 16.9% |
4.5. Overall Performance
5. Conclusions and Outlook
Acknowledgements
Appendix I Variable sampling plans used for constructing the LUTs for the different SPECL vegetation classes.
Class 2: dark vegetation | |||||||
---|---|---|---|---|---|---|---|
Leaf variables | Unit | Distribution type | Minimum | Maximum | Mean | σ | # intervals |
Cab | μg cm-2 | After [26] | 20 | 90 | - | - | 8 |
Cw | g cm-2 | Uniform | 0.0100 | 0.0600 | - | - | 5 |
Cdm | g cm-2 | Uniform | 0.0035 | 0.0150 | - | - | 5 |
Cbp | - | Gaussian | 0.0 | 1.5 | 0.0 | 0.6 | 1 |
N | - | Gaussian | 1.0 | 3.5 | 2.0 | 1.0 | 3 |
Canopy variables | |||||||
LAI | m2 m-2 | After [26] | 0.5 | 6 | - | - | 8 |
ALA | ° | Gaussian | 25 | 70 | 57 | 20 | 3 |
HS | - | Gaussian | 0.001 | 0.2 | 0.02 | 0.1 | 3 |
BS | - | Gaussian | 0.3 | 1.1 | 0.7 | 0.3 | 1 |
Total # of samples : | 43,200 |
Class 3: average vegetation | |||||||
---|---|---|---|---|---|---|---|
Leaf variables | Unit | Distribution type | Minimum | Maximum | Mean | σ | # intervals |
Cab | μg cm-2 | After [26] | 20 | 100 | - | - | 8 |
Cw | g cm-2 | Uniform | 0.0100 | 0.0700 | - | - | 5 |
Cdm | g cm-2 | Uniform | 0.0035 | 0.0250 | - | - | 5 |
Cbp | - | Fixed value | 0.0 | 0.0 | - | - | 1 |
N | - | Gaussian | 1.0 | 2.5 | 1.63 | 0.5 | 3 |
Canopy variables | |||||||
LAI | m2 m-2 | After [26] | 1.0 | 7.0 | - | - | 8 |
ALA | ° | Gaussian | 30 | 70 | 57 | 20 | 3 |
HS | - | Gaussian | 0.001 | 0.3 | 0.05 | 0.2 | 3 |
BS | - | Gaussian | 0.3 | 1.1 | 0.7 | 0.3 | 1 |
Total # of samples : | 43,200 |
Class 4: bright vegetation | |||||||
---|---|---|---|---|---|---|---|
Leaf variables | Unit | Distribution type | Minimum | Maximum | Mean | σ | # intervals |
Cab | μg cm-2 | After [26] | 20 | 100 | - | - | 8 |
Cw | g cm-2 | Uniform | 0.0100 | 0.0800 | - | - | 5 |
Cdm | g cm-2 | Uniform | 0.0050 | 0.0250 | - | - | 5 |
Cbp | - | Fixed value | 0.0 | 0.0 | - | - | 1 |
N | - | Gaussian | 1.0 | 2.5 | 1.63 | 1.0 | 3 |
Canopy variables | |||||||
LAI | m2 m-2 | After [26] | 1.5 | 7.0 | - | - | 8 |
ALA | ° | Gaussian | 30 | 70 | 57 | 20 | 3 |
HS | - | Gaussian | 0.001 | 0.3 | 0.05 | 0.2 | 3 |
BS | - | Gaussian | 0.3 | 1.1 | 0.7 | 0.3 | 1 |
Total # of samples : | 43,200 |
Class 5: yellow vegetation | |||||||
---|---|---|---|---|---|---|---|
Leaf variables | Unit | Distribution type | Minimum | Maximum | Mean | σ | # intervals |
Cab | μg cm-2 | After [26] | 20 | 100 | - | - | 8 |
Cw | g cm-2 | Uniform | 0.0100 | 0.0800 | - | - | 5 |
Cdm | g cm-2 | Uniform | 0.0050 | 0.0250 | - | - | 5 |
Cbp | - | Fixed value | 0.0 | 0.0 | - | - | 1 |
N | - | Gaussian | 1.0 | 2.5 | 1.63 | 1.0 | 3 |
Canopy variables | |||||||
LAI | m2 m-2 | After [26] | 2.0 | 9.0 | - | - | 8 |
ALA | ° | Gaussian | 30 | 70 | 57 | 20 | 3 |
HS | - | Gaussian | 0.001 | 0.3 | 0.2 | 0.2 | 3 |
BS | - | Gaussian | 0.3 | 1.1 | 0.7 | 0.3 | 1 |
Total # of samples : | 43,200 |
Class 6: mix of vegetation and soil | |||||||
---|---|---|---|---|---|---|---|
Leaf variables | Unit | Distribution type | Minimum | Maximum | Mean | σ | # intervals |
Cab | μg cm-2 | After [26] | 10 | 80 | - | - | 7 |
Cw | g cm-2 | Uniform | 0.0070 | 0.0500 | - | - | 5 |
Cdm | g cm-2 | Uniform | 0.0020 | 0.0250 | - | - | 5 |
Cbp | - | Gaussian | 0.0 | 0.5 | 0.0 | 0.5 | 2 |
N | - | Gaussian | 1.0 | 3.5 | 1.7 | 1.0 | 3 |
Canopy variables | |||||||
LAI | m2 m-2 | After [26] | 0.2 | 3.0 | - | - | 5 |
ALA | ° | Gaussian | 30 | 60 | 57 | 20 | 3 |
HS | - | Gaussian | 0.01 | 0.3 | 0.2 | 0.3 | 3 |
BS | - | Gaussian | 0.5 | 1.2 | 0.9 | 0.2 | 3 |
Total # of samples : | 141,750 |
Class 12: dry vegetation/soil | |||||||
---|---|---|---|---|---|---|---|
Leaf variables | Unit | Distribution type | Minimum | Maximum | Mean | σ | # intervals |
Cab | μg cm-2 | After [26] | 0 | 20 | - | - | 3 |
Cw | g cm-2 | Uniform | 0.0010 | 0.0100 | - | - | 5 |
Cdm | g cm-2 | Uniform | 0.0020 | 0.0150 | - | - | 5 |
Cbp | - | Gaussian | 0.0 | 1.5 | 0.0 | 0.6 | 3 |
N | - | Gaussian | 1.5 | 4.0 | 2.2 | 1.0 | 3 |
Canopy variables | |||||||
LAI | m2 m-2 | After [26] | 0. | 1.5 | - | - | 5 |
ALA | ° | Gaussian | 30 | 70 | 57 | 20 | 3 |
HS | - | Gaussian | 0.01 | 0.8 | 0.2 | 0.2 | 1 |
BS | - | Gaussian | 0.7 | 1.3 | 1.0 | 0.2 | 3 |
Total # of samples : | 30,375 |
Class 13: sparse vegetation/soil | |||||||
---|---|---|---|---|---|---|---|
Leaf variables | Unit | Distribution type | Minimum | Maximum | Mean | σ | # intervals |
Cab | μg cm-2 | After [26] | 0 | 40 | - | - | 5 |
Cw | g cm-2 | Uniform | 0.0050 | 0.0300 | - | - | 5 |
Cdm | g cm-2 | Uniform | 0.0020 | 0.0200 | - | - | 5 |
Cbp | - | Gaussian | 0.0 | 0.5 | 0.0 | 0.5 | 2 |
N | - | Gaussian | 1.0 | 4.0 | 1.7 | 1.0 | 3 |
Canopy variables | |||||||
LAI | m2 m-2 | After [26] | 0.01 | 1.5 | - | - | 5 |
ALA | ° | Gaussian | 30 | 70 | 57 | 20 | 3 |
HS | - | Gaussian | 0.01 | 0.8 | 0.2 | 0.2 | 1 |
BS | - | Gaussian | 0.7 | 1.3 | 1.0 | 0.2 | 3 |
Total # of samples : | 33,750 |
Appendix II. Vegetation indices used to provide a first estimate of the output result. Rx indicates the reflectance value in band x.
Vegetation index | Equation | Reference |
---|---|---|
Broadband vegetation indices / canopy structure indices | ||
Normalized Difference Vegetation Index (NDVI) | [7] | |
Ratio Vegetation Index (RVI) | [68] | |
Soil-Adjusted Vegetation Index (SAVI) | [8] | |
Soil-Adjusted Vegetation Index 2 (SAVI2) | [69] | |
Modified Soil-Adjusted Vegetation Index (MSAVI) | [70] | |
Optimized Soil-Adjusted Vegetation Index (OSAVI) | [71] | |
Transformed Soil-Adjusted Vegetation Index (TSAVI) | [72] | |
Adjusted Transformed Soil Adjusted Vegetation Index (ATSAVI) | [14] | |
Renormalized Difference Vegetation Index (RDVI) | [5] | |
Triangular Vegetation Index (TVI) | [55] | |
Modified Triangular Vegetation Index 1 (MTVI1) | [10] | |
Modified Triangular Vegetation Index 2 (MTVI2) | [10] | |
Narrow band chlorophyll indices | ||
Chlorophyll Absorption Reflectance Index (CARI) | [73] | |
Transformed Chlorophyll Absorption Ratio Index (TCARI) | [74] | |
Modified Chlorophyll Absorption Reflectance Index (MCARI) | [75] | |
Modified Chlorophyll Absorption Reflectance Index (MCARI1) | [10] | |
Modified Chlorophyll Absorption Reflectance Index (MCARI2) | [10] | |
Simple Ratio at 705 Index (SR705) | [76] | |
Normalized Difference Index (mND705) | [76] | |
Greenness Index (GI) | [18] | |
Photochemical Reflectance Index (PRI) | [77] | |
Red Edge Inflection Point (REIP1) | ; | [59] |
Red Edge Inflection Point (REIP2) | Maximum of 1st derivative obtained by Savitzky – Golay filtering | [78] |
Red Edge Inflection Point (REIP3) | Minimum of 2nd derivative obtained by Savitzky – Golay filtering | [78] |
Red Edge Inflection Point (REIP4) | REIP calculation based on lagrangian interpolation. | [79] |
1st-order Derivative-based Green Vegetation Index (DGVI1) | Surface under the curve of the first derivative between 680 and 760 nm | [80] |
2nd-order Derivative-based Green Vegetation Index (DGVI2) | Surface under the curve of the second derivative between 680 and 760 nm | [80] |
Carter Stress Index 2 (CSI2) | [81] | |
Narrow band water indices | ||
Moisture Stress Index (MSI) | [82] | |
Leaf Water Vegetation Index 1 (LWVI1) | [11] | |
Leaf Water Vegetation Index 2 (LWVI2) | [11] | |
Disease Water Stress Index 5 | [83] | |
Narrow band dry matter indices | ||
Normalized Difference Nitrogen Index (NDNI) | [84] | |
Normalized Difference Lignin Index (NDLI) | [84] | |
Cellulose Absorption Index (CAI) | [12] | |
Shortwave Infrared Green Vegetation Index (SWIRVI) | [85] |
References and Notes
- Bastiaanssen, W.G.M.; Ali, S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agr. Ecosyst. Environ. 2003, 94, 321–340. [Google Scholar] [CrossRef]
- Moran, M.S.; Inoue, Y.; Barnes, E.M. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997, 61, 319–346. [Google Scholar] [CrossRef]
- Harmoney, K.R.; Moore, K.J.; George, J.R.; Brummer, E.C.; Russell, J.R. Determination of pasture biomass using four indirect methods. Agron. J. 1997, 89, 665–672. [Google Scholar] [CrossRef]
- Cierniewski, J.; Verbrugghe, M. Influence of soil surface roughness on soil bidirectional reflectance. Int. J. Remote Sens. 1997, 18, 1277–1288. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Bréon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Zurita-Milla, R.; de Wit, A.J.W.; Brazile, J.; Singh, R.; Schaepman, M.E. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 165–193. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, J.A. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of Third Symposium on Significant Results Obtained with ERTS -1, NASA; Goddard Space Flight Center: Greenbelt, MD, USA, 1973; Volume 1, pp. 309–317, (SEE N74-30705 20-13). [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Galvão, L.S.; Formaggio, A.R.; Tisot, D.A. Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sens. Environ. 2005, 94, 523–534. [Google Scholar] [CrossRef]
- Nagler, P.L.; Inoue, Y.; Glenn, E.P.; Russ, A.L.; Daughtry, C.S.T. Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes. Remote Sens. Environ. 2003, 87, 310–325. [Google Scholar] [CrossRef]
- Houborg, R.; Soegaard, H.; Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 2007, 106, 39–58. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 2008, 112, 2341–2353. [Google Scholar] [CrossRef]
- Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C.M. Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens. Environ. 2003, 86, 120–131. [Google Scholar] [CrossRef]
- Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.-M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjon, A.; Lopez-Lozano, R.; Miller, J.R.; Martin, P.; Cachorro, V.; Gonzalez, M.R.; de Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Ustin, S.L. Modeling canopy water content for carbon estimates from MODIS data at land EOS validation sites. In Proceedings of International Geoscience and Remote Sensing Symposium, Sydney, Australia, 2001; Vol. 1, pp. 342–344.
- Gastellu-Etchegorry, J.P.; Bruniquel-Pinel, V. A modeling approach to assess the robustness of spectrometric predictive equations for canopy chemistry. Remote Sens. Environ. 2001, 76, 1–15. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F.; Andrieu, B.; Danson, F.M.; Jaggard, K. Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sens. Environ. 1995, 52, 163–172. [Google Scholar] [CrossRef]
- Vohland, M.; Jarmer, T. Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT+SAIL). Int. J. Remote Sens. 2008, 29, 191–209. [Google Scholar] [CrossRef]
- Lavergne, T.; Kaminski, T.; Pinty, B.; Taberner, M.; Gobron, N.; Verstraete, M.M.; Vossbeck, M.; Widlowski, J.L.; Giering, R. Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes. Remote Sens. Environ. 2007, 107, 362–375. [Google Scholar] [CrossRef]
- Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Macé, D.; Pragnère, A.; Myneni, R.; Knyazikhin, Y.; Wang, L. Retrieval of canopy biophysical variables from bidirectional reflectance using prior information to solve the ill-posed inverse problem. Remote Sens. Environ. 2002, 84, 1–15. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Martonchik, J.V.; Diner, D.J.; Myneni, R.B.; Verstraete, M.; Pinty, B.; Gobron, N. Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data. J. Geophys. Res D Atmos. 1998, 103, 32239–32256. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Myneni, R.B.; Pragnère, A.; Knyazikhin, Y. Investigation of a Model Inversion Technique to Estimate Canopy Biophysical Variables from Spectral and Directional Reflectance Data. Agronomie 2000, 20, 3–22. [Google Scholar] [CrossRef]
- Bacour, C.; Baret, F.; Beal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sens. Environ. 2006, 105, 313–325. [Google Scholar] [CrossRef]
- Atzberger, C. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models. Remote Sens. Environ. 2004, 93, 53–67. [Google Scholar] [CrossRef]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O.; Roujean, J.L.; Leroy, M. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Baret, F.; Buis, S. Estimating canopy characteristics from remote sensing observations. Review of methods and associated problems. In Advances in Land Remote Sensing: System, Modeling, Inversion and Application; Liang, S., Ed.; Springer Verlag: Heidelberg, Germany, 2008; pp. 173–202. [Google Scholar]
- Bacour, C.; Jacquemoud, S.; Leroy, M.; Hautecoeur, O.; Weiss, M.; Prévot, B.N.; Chauki, H. Reliability of the estimation of vegetation characteristics by inversion of three canopy reflectance models on POLDER data. Agronomie 2002, 22, 555–565. [Google Scholar] [CrossRef]
- Widlowski, J.L.; Pinty, B.; Gobron, N.; Verstraete, M.M.; Diner, D.J.; Davis, A.B. Canopy structure parameters derived from multi-angular remote sensing data for terrestrial carbon studies. Climatic Change 2004, 67, 403–415. [Google Scholar] [CrossRef]
- Dorigo, W.; Richter, R.; Schneider, T.; Schaepman, M.; Müller, A.; Wagner, W. Assessing the influence of spectral band configuration on automated radiative transfer model inversion. In Proceedings of 6th EARSeL Workshop on Imaging Spectroscopy, Tel Aviv, Israel, 2009.
- Verhoef, W. A Bayesian optimisation approach for model inversion of hyperspectral multidirectional observations: the balance with a priori information. In Proceedings of 10th International Symposium on Physical Measurements and Signatures in Remote Sensing, Davos, Switzerland, 2007.
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Fourty, T.; Baret, F.; Jacquemoud, S.; Schmuck, G.; Verdebout, J. Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems. Remote Sens. Environ. 1996, 56, 104–117. [Google Scholar] [CrossRef]
- Koetz, B.; Baret, F.; Poilve, H.; Hill, J. Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens. Environ. 2005, 95, 115–124. [Google Scholar] [CrossRef]
- Launay, M.; Guerif, M. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Agr. Ecosyst. Environ. 2005, 111, 321–339. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Glassy, J.; Privette, J.L.; Tian, Y.; Lotsch, A.; Zhang, Y.; Wang, Y.; Morisette, J.T.; Votava, T.; Myneni, R.B.; Nemani, R.R.; Running, S.W. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15) Algorithm Theoretical Basis Document; 1999. Available online: http://eospso.gsfc.nasa.gov/atbd/modistables.html (accessed on September 10, 2009).
- Chen, J.M.; Pavlic, G.; Brown, L.; Cihlar, J.; Leblanc, S.G.; White, H.P.; Hall, R.J.; Peddle, D.R.; King, D.J.; Trofymow, J.A.; Swift, E.; Van der Sanden, J.; Pellikka, P.K.E. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sens. Environ. 2002, 80, 165–184. [Google Scholar] [CrossRef]
- Lotsch, A.; Tian, Y.; Friedl, M.A.; Myneni, R.B. Land cover mapping in support of LAI and FPAR retrievals from EOS-MODIS and MISR: Classification methods and sensitivities to errors. Int. J. Remote Sens. 2003, 24, 1997–2016. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef]
- Verhoef, W. Earth observation modeling based on layer scattering matrices. Remote Sens. Environ. 1985, 17, 165–178. [Google Scholar] [CrossRef]
- Widlowski, J.L.; Pinty, B.; Lavergne, T.; Verstraete, M.M.; Gobron, N. Using 1-D models to interpret the reflectance anisotropy of 3-D canopy targets: Issues and caveats. IEEE Trans. Geosci. Remot. Sen. 2005, 43, 2008–2017. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, 56–66. [Google Scholar] [CrossRef]
- Richter, R. Atmospheric/Topographic Correction for Satellite Imagery, DLR report DLR-IB 565-01/08; Wessling, Germany, 2009. Available online: http://hydrogis.geology.upatras.gr/res_net/data/atcor23_manual.pdf (accessed on September 10, 2009).
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2005; p. 358. [Google Scholar]
- Combal, B.; Baret, F.; Weiss, M. Improving canopy variables variables estimation from remote sensingdata by exploiting ancillary information. Case study on sugar beet canopies. Agronomie 2002, 22, 205–215. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens. Environ. 2008, 112, 2592–2604. [Google Scholar] [CrossRef]
- Vohland, M.; Mader, S.; Dorigo, W. Applying different inversion techniques to retrieve stand variables of summer barley with PROSPECT + SAIL. Int. J. Appl. Earth Obs. Geoinf. (In press) [CrossRef]
- Cocks, T.; Jenssen, R.; Stewart, A.; Wilson, I.; Shields, T. The HyMap airborne hyperspectral sensor: the system, calibration and performance. In Proceedings of the 1st EARSeL Workshop on Imaging Spectroscopy, Zurich, Switzerland, 1998.
- Berk, A.; Bernstein, L.S.; Anderson, G.P.; Acharya, P.K.; Robertson, D.C.; Chetwynd, J.H.; Adler-Golden, S.M. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- Richter, R.; Bachmann, M.; Dorigo, W.; Müller, A. Influence of the adjacency effect on ground reflectance measurements. IEEE Geosci. Remote Sen. Lett. 2006, 3, 565–569. [Google Scholar] [CrossRef]
- Broge, N.H.; Mortensen, J.V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens. Environ. 2002, 81, 45–57. [Google Scholar] [CrossRef]
- Dorigo, W. Retrieving canopy variables by radiative transfer model inversion—a regional approach for imaging spectrometer data; TU München: Munich. Germany, 2008; p. 230. Available online: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20070921-629085-1-7 (accessed on September 10th, 2009).
- Dorigo, W.; Bachmann, M.; Heldens, W. AS Toolbox & processing of field spectra—user’s manual; German Aerospace Center, DLR-DFD; Imaging Spectroscopy Group: Wessling, Germany, 2006. [Google Scholar]
- Fourty, T.; Baret, F. Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: A simulation study. Remote Sens. Environ. 1997, 61, 34–45. [Google Scholar]
- Guyot, G.; Baret, F.; Major, D.J. High spectral resolution: determination of spectral shifts between the red and the near infrared. Int. Arch. Photogramm Remote Sen. 1988, 11, 750–760. [Google Scholar]
- Koetz, B.; Schaepman, M.; Morsdorf, F.; Bowyer, P.; Itten, K.; Allgower, B. Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties. Remote Sens. Environ. 2004, 92, 332–344. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Ustin, S.L.; Verdebout, J.; Schmuck, G.; Andreoli, G.; Hosgood, B. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sens. Environ. 1996, 56, 194–202. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Büker, C.; van Leeuwen, H.J.C.; Bouman, B.A.M. A framework for monitoring crop growth by combining directional and spectral remote sensing information. Remote Sens. Environ. 1994, 50, 161–170. [Google Scholar] [CrossRef]
- Doraiswamy, P.C.; Sinclair, T.R.; Hollinger, S.; Akhmedov, B.; Stern, A.; Prueger, J. Application of MODIS derived parameters for regional crop yield assessment. Remote Sens. Environ. 2005, 97, 192–202. [Google Scholar] [CrossRef]
- Itten, K.I.; Dell’Endice, F.; Hueni, A.; Kneubühler, M.; Schläpfer, D.; Odermatt, D.; Seidel, F.; Huber, S.; Schopfer, J.; Kellenberger, T.; Bühler, Y.; D’Odorico, P.; Nieke, J.; Alberti, E.; Meuleman, K. APEX-The hyperspectral ESA airborne prism experiment. Sensors. 2008, 8, 6235–6259. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Richter, R.; Habermeyer, M.; Dech, S.; Segl, K.; Kaufmann, H. Spectroradiometric requirements for the reflective module of the airborne spectrometer ARES. IEEE Geosci. Remote Sens. Lett. 2005, 2, 329–332. [Google Scholar] [CrossRef]
- Richter, R.; Müller, A.; Habermeyer, M.; Dech, S.; Segl, K.; Kaufmann, H. Spectral and radiometric requirements for the airborne thermal imaging spectrometer ARES. Int. J. Remote Sens. 2005, 26, 3149–3162. [Google Scholar] [CrossRef]
- Stuffler, T.; Förster, K.; Hofer, S.; Leipold, M.; Sang, B.; Kaufmann, H.; Penne, B.; Mueller, A.; Chlebek, C. Hyperspectral imaging-An advanced instrument concept for the EnMAP mission (Environmental Mapping and Analysis Programme). Acta Astronaut. 2009, 65, 1107–1112. [Google Scholar] [CrossRef]
- Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie, Pawnee National Grasslands, Colorado. In Proceedings of the 8th International Symposium on Remote Sensing of the Environment, Ann Arbor, MI, USA, 1972; pp. 1357–1381.
- Major, D.J.; Baret, F.; Guyot, G. A vegetation index adjusted for soil brightness. Int. J. Remote Sens. 1990, 11, 727–740. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G.; Major, D.J. TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In Proceedings of Quantitative Remote Sensing: An Economic Tool for the Nineties, IGARSS ’89 and 12th Canadian Symposium on Remote Sensing, Vancouver, Canada, 1989; pp. 1355–1358.
- Kim, M.S.; Daughtry, C.S.T.; Chapelle, E.W.; McMurtrey, J.E. The use of high spectral resolution bands for estimating absorbed photosynthetically actve radiation (APAR). In Proceedings of ISPRS’94, Val d’Isere, France, 1994; pp. 299–306.
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E., III. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Penuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of the plant water concentration by the reflectance Water Index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Dawson, T.P.; Curran, P.J. A new technique for interpolating the reflectance red edge position. Int. J. Remote Sens. 1998, 19, 2133–2139. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Chen, Z. Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens. Environ. 1995, 54, 38–48. [Google Scholar] [CrossRef]
- Carter, G.A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int. J. Remote Sens. 1994, 15, 697–704. [Google Scholar] [CrossRef]
- Hunt, J.; Raymond, E.; Rock, B.N. Detection of changes in leaf water content using Near- and Middle-Infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar]
- Apan, A.; Held, A.; Phinn, S.; Markley, J. Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery. Int. J. Remote Sens. 2004, 25, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Serrano, L.; Penuelas, J.; Ustin, S.L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sens. Environ. 2002, 81, 355–364. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P.; Law, B.E.; Treuhaft, R.N. Subpixel canopy cover estimation of coniferous forests in Oregon using SWIR imaging spectrometry. J. Geophys. Res. D. Atmos. 2001, 106, 5151–5160. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remot. Sen. 1992, 30, 261–270. [Google Scholar] [CrossRef]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Dorigo, W.; Richter, R.; Baret, F.; Bamler, R.; Wagner, W. Enhanced Automated Canopy Characterization from Hyperspectral Data by a Novel Two Step Radiative Transfer Model Inversion Approach. Remote Sens. 2009, 1, 1139-1170. https://doi.org/10.3390/rs1041139
Dorigo W, Richter R, Baret F, Bamler R, Wagner W. Enhanced Automated Canopy Characterization from Hyperspectral Data by a Novel Two Step Radiative Transfer Model Inversion Approach. Remote Sensing. 2009; 1(4):1139-1170. https://doi.org/10.3390/rs1041139
Chicago/Turabian StyleDorigo, Wouter, Rudolf Richter, Frédéric Baret, Richard Bamler, and Wolfgang Wagner. 2009. "Enhanced Automated Canopy Characterization from Hyperspectral Data by a Novel Two Step Radiative Transfer Model Inversion Approach" Remote Sensing 1, no. 4: 1139-1170. https://doi.org/10.3390/rs1041139
APA StyleDorigo, W., Richter, R., Baret, F., Bamler, R., & Wagner, W. (2009). Enhanced Automated Canopy Characterization from Hyperspectral Data by a Novel Two Step Radiative Transfer Model Inversion Approach. Remote Sensing, 1(4), 1139-1170. https://doi.org/10.3390/rs1041139