Aerosol Optical Depth Measured at Different Coastal Boundary Layers and Its Links with Synoptic-Scale Features
Abstract
:1. Introduction
2. Description of Experiments and Instrumentation
2.1. SOAP experiment in 2006
- Determination of the vertical structure of the chemical, physical and optical properties of aerosol particles, including solar radiative closure between observed and calculated aerosol properties (direct climate effect).
- Using the above information to define the role of absorbing and non-absorbing aerosol particles in coastal regions.
- Improve the knowledge on aerosol particle life cycle and transport pathways across Europe, including the Saharan dust events.
2.2. MACRON experiment in 2007
2.3. AREX experiment in 2008
2.4. Description of selected instruments used during the campaigns
Optical channels | 340 ± 0.3 nm, 2 nm FWHM* |
380 ± 0.4 nm, 4 nm FWHM | |
440 ± 1.5 nm, 10 nm FWHM | |
500 ± 1.5 nm, 10 nm FWHM | |
675 ± 1.5 nm, 10 nm FWHM | |
Resolution | 0.01 W m−² |
Dynamic range | >300000 |
Viewing angle | 2.5° |
Precision | 1–2% |
Non linearity | max. 0.002% |
3. Theory
4. Results and Discussion
4.1. Mediterranean region
- advection temperature decreasing is related with advection pressure decreasing
- advection temperature increasing is related with advection pressure increasing.
4.2. Arctic Region
5. Conclusions
- affected by developing structures reaching the nearest region in synoptic scale
- under the Jet Stream as an extended baric structure causing Sahara dust flow to the North in the Mediterranean region (SOAP experiment):
- affected by developed structures (trough) reaching from far North to Crete
- under shallow baric structures directed over the Mediterranean Sea
Acknowledgements
References
- Shahgedanova, M.; Lamakin, M. Trend in aerosol optical depth in the Russian Arctic and their links with synoptic climatology. Sci. Total Envir. 2005, 41, 3–148. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, A.; O’Neill, N.T.; Royer, A.; Tarussov, A. Aerosol optical depth over Canada and the link with synoptic air mass types. J. Geophys. Res. 1996, 101, 299–318. [Google Scholar] [CrossRef]
- Dayan, U.; Lamb, D. Global and synoptic-scale weather patterns controlling wet atmospheric deposition over central Europe. Atmos. Environ. 2005, 39, 521–533. [Google Scholar] [CrossRef]
- Zielinski, T.; Zielinski, A. Aerosol extinction and optical thickness in the atmosphere over the Baltic Sea determined with lidar. J. Aerosol Sci. 2002, 33, 47–61. [Google Scholar] [CrossRef]
- Zielinski, T. Changes in aerosol concentration with altitude in the marine boundary layer in coastal areas of the southern Baltic Sea. Bull. PAN Earth Sci. 1998, 46, 133–139. [Google Scholar]
- Piazzola, J.; Bouchara, F.; de Leeuw, G.; Van Eijk, A.M.J. Development of the Mediterranean extinction code (MEDEX). Opt. Eng. 2003, 42, 912–924. [Google Scholar] [CrossRef]
- Villevalde, Y.V.; Yakovlev, V.V.; Smyshlayev, S.P. Measurements of atmospheric optical parameters in the Baltic Sea and Atlantic Ocean. In Studies of the southern part of the Norwegian Sea; Kluikov, Y.Y., Ed.; Gidrometeoizadat: Moscov, Russia, 1989; pp. 105–110. [Google Scholar]
- Kuśmierczyk-Michulec, J.; Darecki, M. The aerosol optical thickness over the Baltic Sea. Oceanologia 1996, 38, 423–435. [Google Scholar]
- Zielinski, T. Physical properties of aerosol near-water layer in coastal areas. Rozprawy i Monografie IOPAN 2006, 18, 164. [Google Scholar]
- Mauger, G.S. Synoptic sensitivities of subtropical clouds separating aerosol effects from meteorology . PhD Dissertation in Oceanography, University of California, San Diego, USA, 2008. [Google Scholar]
- Zhang, T.; Scambos, T.; Haran, T.; Hinzman, L.D.; Barry, R.G.; Kane, D.L. Ground-based and satellite-derived measurements of surface albedo on the North slope of Alaska. J. Hydrometeorology 2003, 4, 77–91. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.; Smirnov, A.; Kaufman, Y.; King, M.; Tanre, D.; Slutsker, L. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Sakerin, S.M.; Kabanov, D.M.; Slutsker, I.; Chin, M.; Diehl, T.L.; Remer, L.A.; Kahn, R.; Ignatov, A.; Liu, L.; Mishchenko, M.; Eck, T.F.; Kuscera, T.L.; Giles, D.; Kopelevich, O.V. Ship-based aerosol optical depth measurements in the Atlantic Ocean: Comparison with satellite retrievals and GOCART model. Geophys. Res. Lett. 2006, 33, L14817. [Google Scholar] [CrossRef]
- Remiszewska, J.; Flatau, P.J.; Markowicz, K.M.; Reid, E.A.; Reid, J.S.; Witek, M.L. Modulation of the aerosol absorption and single-scattering albedo due to synoptic scale and sea breeze circulations: United Arab Emirates experiment perspective. J. Geophys. Res. 2007, 112, D05204. [Google Scholar] [CrossRef]
- Deshpande, C.G.; Kamra, A.K. Aerosol size distributions in the north and south Indian ocean during the northeast monsoon season. Atmos. Res. 2002, 65, 51–76. [Google Scholar] [CrossRef]
- Smirnov, A.; Villevalde, Y.; O’Neill, N.T.; Royer, A.; Tarussov, A. Aerosol optical depth over the oceans: analysis in terms of synoptic air mass types. J. Geophys. Res. 1995, 100 (D8), 16639–16650. [Google Scholar] [CrossRef]
- Mulcahy, J.P.; O’Dowd, C.D.; Jennings, S.G.; Ceburnis, D. Significant enhancement of aerosol optical depth in marine air under high wind conditions. Geophys. Res. Lett. 2008, 35, L16810. [Google Scholar] [CrossRef]
- Jensen, D.; Gathman, S.; Zeisse, C.; Littfin, K. EOPACE (Electrooptical Propagation Assessment in Coastal Environments) overview and initial accomplishments. J. Aerosol Sci. 1999, 30, S53–S54. [Google Scholar] [CrossRef]
- Jensen, D.; Zeisse, C.; Littfin, K.; Gathman, S. EOPACE (Electrooptical Propagation Assessment in Coastal Environments) overview and initial accomplishments. In Propagation and Imaging Through the Atmosphere; Bissonnette, L.R., Dainty, C., Eds.; SPIE-International Society for Optical Engineering: Washington, DC, USA, 1997; pp. 98–108. [Google Scholar]
- Moorthy, K.K.; Satheesh, S.K.; Murthy, B.V. Investigations of marine aerosols over the tropical Indian Ocean. J. Geophys. Res. 1997, 102 (Dl 5), 18827–18842. [Google Scholar] [CrossRef]
- Moorthy, K.K.; Satheesh, S.K; Murthy, B.V. Characteristics of spectral optical depths and size distributions of aerosols over tropical oceanic regions. J. Atmos. Sol. Terr. Phys. 1998, 60, 981–992. [Google Scholar] [CrossRef]
- Dion, D. On the prediction of IR aerosol extinction near the sea surface. J. Aerosol Sci. 1999, 30, S61–S62. [Google Scholar] [CrossRef]
- Fredrickson, P.; Davidson, K. Measurement and modelling of near-ocean surface properties affecting aerosol concentration profiles during EOPACE. J. Aerosol Sci. 1999, 30, S55–S56. [Google Scholar] [CrossRef]
- Kuśmierczyk-Michulec, J.; Rozwadowska, A. Seasonal changes of the aerosol optical thickness for the atmosphere over the Baltic Sea-preliminary results. Oceanologia 1999, 41, 127–145. [Google Scholar]
- Li, F.; Okada, K. Diffusion and modification of marine aerosol particles over the coastal areas in China: A case study using a single particle analysis. J. Atmos. Sci. 1999, 56, 241–248. [Google Scholar] [CrossRef]
- Tsai, Y.I.; Cheng, M.T. Visibility and aerosol chemical compositions near the coastal area in Central Taiwan. Sci. Total Environ. 1999, 231, 37–51. [Google Scholar] [CrossRef]
- Porter, J.N.; Lienert, B.; Sharma, S.K. Using horizontal and slant lidar measurements to obtain calibrated aerosol scattering coefficients from a coastal lidar in Hawaii. J. Atmos. Oceanic Technol. 2000, 17, 1445–1454. [Google Scholar] [CrossRef]
- Gao, Y.; Anderson, J.R. Characteristics of Chinese aerosols determined by individual-particle analysis. J. Geophys. Res. 2001, 106 (D16), 18037–18045. [Google Scholar] [CrossRef]
- Welton, E.J.; Voss, K.J.; Quinn, P.K.; Flatau, P.J.; Markowicz, K.; Campbell, J.R.; Spinhirne, J.D.; Gordon, H.R.; Johnson, J.E. Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars. J. Geophys. Res. Atmos. 2002, 107 (D19), 8019. [Google Scholar] [CrossRef]
- Karasinski, G.; Kardas, A.E.; Markowicz, K.; Malinowski, S.P.; Stacewicz, T.; Stelmaszczyk, K.; Chudzynski, S.; Skubiszak, W.; Posyniak, M.; Jagodnicka, A.K.; Hochhertz, C.; Woeste, L. LIDAR investigation of properties of atmospheric aerosol. Eur. Phys. J. 2007, 144, 129–138. [Google Scholar] [CrossRef]
- Markowicz, K.M.; Flatau, P.J.; Kardas, A.E.; Remiszewska, J.; Stelmaszczyk, K.; Woeste, L. Ceilometer retrieval of the boundary layer vertical aerosol extinction structure. J. Atmos. Oceanic Technol. 2008, 25, 928–944. [Google Scholar] [CrossRef]
- Zielinski, T.; Pflug, B. Lidar-based studies of aerosol optical properties over coastal areas. Sensors 2007, 7, 3347–3365. [Google Scholar] [CrossRef]
- Sakerin, S.M.; Kabanov, D.M. Spectral dependences of the atmospheric aerosol optical depth in the extended spectral region of 0.4-4 μm. In Sixteenth ARM Science Team Meeting Proceedings, Albuquerque, NM, USA, March 27 - 31, 2006; 2006. [Google Scholar]
- Kabanov, D.M.; Makienko, E.V.; Rakhimov, R.F.; Sakerin, S.M. Typical and anomaly spectral behavior of aerosol optical thickness of the atmosphere in western siberia. In Tenth ARM Science Team Meeting Proceedings, San Antonio, Texas, USA, March 13-17, 2000.
- Toledano, C.; Wiegner, M.; Garhammer, M.; Seefeldner, M.; Gasteiger, J.; Müller, D.; Koepke, P. Spectral aerosol optical depth characterization of desert dust during SAMUM 2006. Tellus Ser. B 2009, 61, 216–228. [Google Scholar] [CrossRef]
- McCartney, J. Optics of the Atmosphere; John Wiley and Sons: New York, NY, USA, 1976. [Google Scholar]
- Liou, K.N. An Introduction to Atmospherics Radiation; Academic Press: London, UK, 2002. [Google Scholar]
- WMO Background Air Pollution MONitoring (BAPMON) Network Information Manual, TD-9789, September, 1990, Iqbal, Muhammad. In An Introduction to Solar Radiation; Academic Press: Toronto, Canada, 1983.
- Georgoussis, G.; Chourdakis, G.; Landulfo, E.; Hondidiadis, K.; Ikonomou, A. Monitoring of air pollution and atmospheric parameters using a mobile backscatter lidar system. 3rd-Workshop LIDAR Measurements in Latin América. Ópt. Pura Aplic. 2006, 39, 37. [Google Scholar]
- Walter, J.S. Principles of Meteorological Analysis; Courier Dover Publications: Phoenix, AZ, USA, 2003; p. 202. [Google Scholar]
- Holton, J.R. An Introduction to Dynamic Meteorology, 4th ed; Academic Press: New York, NY, USA, 2004; p. 158. [Google Scholar]
© 2009 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponczkowska, A.; Zielinski, T.; Petelski, T.; Markowicz, K.; Chourdakis, G.; Georgoussis, G. Aerosol Optical Depth Measured at Different Coastal Boundary Layers and Its Links with Synoptic-Scale Features. Remote Sens. 2009, 1, 557-576. https://doi.org/10.3390/rs1030557
Ponczkowska A, Zielinski T, Petelski T, Markowicz K, Chourdakis G, Georgoussis G. Aerosol Optical Depth Measured at Different Coastal Boundary Layers and Its Links with Synoptic-Scale Features. Remote Sensing. 2009; 1(3):557-576. https://doi.org/10.3390/rs1030557
Chicago/Turabian StylePonczkowska, Agnieszka, Tymon Zielinski, Tomasz Petelski, Krzysztof Markowicz, Giorgos Chourdakis, and Giorgos Georgoussis. 2009. "Aerosol Optical Depth Measured at Different Coastal Boundary Layers and Its Links with Synoptic-Scale Features" Remote Sensing 1, no. 3: 557-576. https://doi.org/10.3390/rs1030557